Comparison of conjunctival staining between lissamine green and yellow filtered fluorescein sodium



      To compare conjunctival staining between lissamine green and fluorescein sodium using a yellow barrier filter.


      Retrospective cross-sectional study.


      Thirteen eyes of 13 patients with dry eyes.


      All patients underwent ocular surface staining with fluorescein sodium and lissamine green. Ocular surface staining with fluorescein sodium was observed through slit-lamp examination under cobalt blue illumination and a yellow filter. Temporal (0–5) and nasal (0–5) conjunctival staining grade was separately graded according to the Oxford scheme. The contrast score was defined as the absolute difference between mean grey values of punctate staining and background. Conjunctival staining grade and contrast scores were compared between these 2 staining methods.


      The sum of the conjunctival staining grade (0–10) for the nasal and temporal conjunctiva was 4.7 ± 2.5 for fluorescein sodium, which was significantly higher than that of lissamine green, 4.1 ± 2.5 (p = 0.005). The contrast score of temporal and nasal conjunctival staining was 34.6 ± 12.0 and 34.7 ± 10.3, respectively, for fluorescein sodium, which was also significantly greater than for lissamine green (23.4 ± 8.1 and 21.0 ± 9.0, respectively; p = 0.003 and p = 0.003, respectively).


      Conjunctival staining with fluorescein sodium and a yellow filter seems to be more sensitive for the detection of conjunctival damage than lissamine green. Fluorescein staining with the yellow filter has the advantage of simultaneous observation of both corneal and conjunctival damage in patients with dry eye without the need for additional vital staining.



      Comparer la coloration de la surface oculaire au vert de Lissamine et à la fluorescéine de sodium avec filtre-écran jaune.


      Étude transversale rétrospective.


      13 yeux de 13 patients souffrant de sécheresse oculaire.


      Tous les patients ont subi une coloration de la surface oculaire à la fluorescéine de sodium et une autre au vert de Lissamine. La coloration à la fluorescéine a été examinée au biomicroscope en lumière bleu cobalt avec un filtre-écran jaune. Le degré de coloration de la surface oculaire dans le quadrant temporal (0-5) et le quadrant nasal (0-5) a été mesuré séparément selon l’échelle d’Oxford. On a défini le degré de contraste comme étant la différence absolue entre les valeurs moyennes de gris de coloration ponctuée et l’arrière-plan. Le degré de coloration de la surface oculaire et le degré de contraste ont été comparés pour les deux méthodes de coloration.


      La somme du degré de coloration de la surface oculaire (0-10) du quadrant nasal et du quadrant temporal s’élevait à 4,7 ± 2,5 avec la fluorescéine de sodium, ce qui était considérablement plus élevé qu’avec le vert de Lissamine, à 4,1 ± 2,5 (p = 0,005). Le degré de contraste de la coloration de la surface oculaire s’élevait à 34,6 ± 12,0 dans le quadrant temporal et à 34,7 ± 10,3 dans le quadrant nasal, pour la fluorescéine, ce qui était aussi considérablement plus élevé qu’avec le vert de Lissamine (23,4 ± 8,1 et 21,0 ± 9,0, respectivement) (p = 0,003 et p = 0,003, respectivement).


      La coloration de la surface oculaire à la fluorescéine de sodium et filtre jaune semble plus sensible pour la détection de dommages à la surface oculaire que la coloration au vert de Lissamine. La coloration à la fluorescéine avec filtre jaune a l’avantage de permettre l’examen simultané des dommages à la cornée et à la conjonctive chez les patients atteints de sécheresse oculaire sans devoir recourir en plus à la coloration vitale.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lemp M.A.
        Report of the National Eye Institute/Industry Workshop on Clinical Trials in Dry Eyes.
        CLAO J. 1995; 21: 221-232
        • Shimazaki-Den S.
        • Iseda H.
        • Dogru M.
        • Shimazaki J.
        Effects of diquafosol sodium eye drops on tear film stability in short BUT type of dry eye.
        Cornea. 2013; 32: 1120-1125
        • Su M.Y.
        • Perry H.D.
        • Barsam A.
        • et al.
        The effect of decreasing the dosage of cyclosporine A 0.05% on dry eye disease after 1 year of twice-daily therapy.
        Cornea. 2011; 30: 1098-1104
        • Nakamura M.
        • Imanaka T.
        • Sakamoto A.
        Diquafosol ophthalmic solution for dry eye treatment.
        Adv Ther. 2012; 29: 579-589
        • Urashima H.
        • Okamoto T.
        • Takeji Y.
        • et al.
        Rebamipide increases the amount of mucin-like substances on the conjunctiva and cornea in the N-acetylcysteine-treated in vivo model.
        Cornea. 2004; 23: 613-619
        • Kinoshita S.
        • Oshiden K.
        • Awamura S.
        • et al.
        A randomized, multicenter phase 3 study comparing 2% rebamipide (OPC-12759) with 0.1% sodium hyaluronate in the treatment of dry eye.
        Ophthalmology. 2013; 120: 1158-1165
        • Bron A.J.
        The Doyne Lecture. Reflections on the tears.
        Eye (Lond). 1997; 11: 583-602
        • Korb D.R.
        • Herman J.P.
        • Finnemore V.M.
        • et al.
        An evaluation of the efficacy of fluorescein, rose bengal, lissamine green, and a new dye mixture for ocular surface staining.
        Eye Contact Lens. 2008; 34: 61-64
        • Eliason J.A.
        • Maurice D.M.
        Staining of the conjunctiva and conjunctival tear film.
        Br J Ophthalmol. 1990; 74: 519-522
        • Manning F.J.
        • Wehrly S.R.
        • Foulks G.N.
        Patient tolerance and ocular surface staining characteristics of lissamine green versus rose bengal.
        Ophthalmology. 1995; 102: 1953-1957
        • Kim J.
        • Foulks G.N.
        Evaluation of the effect of lissamine green and rose bengal on human corneal epithelial cells.
        Cornea. 1999; 18: 328-332
        • Bron A.J.
        • Evans V.E.
        • Smith J.A.
        Grading of corneal and conjunctival staining in the context of other dry eye tests.
        Cornea. 2003; 22: 640-650
        • Maurice D.
        The use of fluorescein in ophthalmological research: The Jonas S. Friedenwald Memorial Lecture.
        Invest Ophthalmol Vis Sci. 1967; 6: 464-477
        • Wolfe D.R.
        Fluorescein angiography basic science and engineering.
        Ophthalmology. 1986; 93: 1617-1620
        • Koh S.
        • Watanabe H.
        • Hosohata J.
        • et al.
        Diagnosing dry eye using a blue-free barrier filter.
        Am J Ophthalmol. 2003; 136: 513-519
        • Bron A.J.
        • Yokoi N.
        • Gaffney E.A.
        • Tiffany J.M.
        A solute gradient in the tear meniscus. II. Implications for lid margin disease, including meibomian gland dysfunction.
        Ocul Surf. 2011; 9: 92-97
        • Yoon K.C.
        • Im S.K.
        • Kim H.G.
        • You I.C.
        Usefulness of double vital staining with 1% fluorescein and 1% lissamine green in patients with dry eye syndrome.
        Cornea. 2011; 30: 972-976
        • Norn M.
        Vital staining of the cornea and conjunctiva; with a mixture of fluorescein and rose bengal.
        Am J Ophthalmol. 1967; 64: 1078