Advertisement

The accuracy of axial length measurements in cases of macula-off retinal detachment

      Abstract

      Objective

      To assess the accuracy of axial length measurements in cases of macula-off retinal detachment using different methods (optical biometry, A-scan ultrasound, and combined applanation vector-A/B-scan biometry).

      Methods

      This prospective clinical study included 100 eyes of 100 patients who underwent vitrectomy alone or phacovitrectomy for macula-off retinal detachment. All patients included signed an informed consent. Preoperative examination of the patients included recording the axial length measurements using optical biometry, A-scan ultrasound, and combined applanation vector-A/B-scan biometry.

      Results

      The mean postoperative IOLMaster axial length after macular reattachment was 26.11 ± 2.91 mm. The mean preoperative IOLMaster axial length with macula-off was 25.32 ± 2.72 mm. The mean preoperative A-scan axial length with macula-off was 25.29 ± 2.80 mm. The mean preoperative vector-A/B-scan axial length with macula-off was 26.03 ± 2.90 mm. The preoperative vector-A/B-scan mean absolute error was 0.59 ± 0.48 D (range, 0.10–2.25 D).

      Conclusions

      Regular methods (optical biometry and A-scan biometry) of measuring the axial length in cases with a detached macula proved to be variable and less accurate. The vector-A/B-scan offered good measurements of the actual axial length in the patients. This was reflected on more accurate postoperative refractive outcome.

      Résumé

      Objectif

      Évaluer la précision des mesures de longueur axiale dans les cas de décollement de rétine impliquant la macula en utilisant différentes méthodes (biométrie optique, échographie oculaire [A-scan] et le vecteur d’aplanation combiné [biométrie A-scan/B-scan]).

      Méthodes

      Cette étude clinique prospective porte sur 100 yeux de 100 patients qui ont subi une vitrectomie seulement ou une phacovitrectomie pour décollement de rétine impliquant la macula. Tous les participants à l'étude ont signé un formulaire de consentement éclairé. Pendant l'examen préopératoire des patients, nous avons mesuré la longueur axiale en utilisant trois méthodes : la biométrie optique, l'échographie oculaire [A-scan] et la biométrie avec vecteur d’aplanation combiné [A-scan/B-scan].

      Résultats

      La longueur axiale moyenne postopératoire selon IOLMaster après le rattachement maculaire était de 26,11 + 2,91 mm. La longueur axiale moyenne préopératoire selon IOLMaster dans les cas impliquant la macula était de 25,32 + 2,72 mm. La longueur axiale moyenne préopératoire selon l'échographie (A-scan) dans les cas impliquant la macula était de 25,29 + 2,80 mm. La longueur axiale moyenne préopératoire selon la méthode combinée (vecteur-A-scan/B-scan) dans les cas impliquant la macula était de 26,03 + 2,90 mm. L'erreur moyenne absolue (EMA) préopératoire selon la méthode combinée (vecteur-A/B-scan) était de 0,59 + 0,48 D (l'écart étant de 0,10 à 2,25 D).

      Conclusion

      Les méthodes régulières (biométrie optique et A-scan) de mesure de la longueur axiale dans les cas comprenant un décollement maculaire ont produit des résultats variables et moins précis. La méthode combinée (vecteur-A/B-scan) a donné de bonnes mesures de la longueur axiale réelle de ces patients. Elle a également produit des résultats réfractifs postopératoires plus précis.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rahman R.
        • Bong C.X.
        • Stephenson J.
        Accuracy of intraocular lens power estimation in eyes having phacovitrectomy for rhegmatogenous retinal detachment.
        Retina. 2014; 34: 1415-1420
        • Manvikar S.R.
        • Allen D.
        • Steel D.H.
        Optical biometry in combined phacovitrectomy.
        J Cataract Refract Surg. 2009; 35: 64-69
        • Hamoudi H.
        • La Cour M.
        Refractive changes after vitrectomy and phacovitrectomy for macular hole and epiretinal membrane.
        J Cataract Refract Surg. 2013; 39: 942-947
        • Hwang H.S.
        • Jee D.
        Effects of the intraocular lens type on refractive error following phacovitrectomy with gas tamponade.
        Curr Eye Res. 2011; 36: 1148-1152
        • el-Baha S.M.
        • el-Samadoni A.
        • Idris H.F.
        • Rashad K.M.
        Intraoperative biometry for intraocular lens (IOL) power calculation at silicone oil removal.
        Eur J Ophthalmol. 2003; 13: 622-626
        • Nakhli F.R.
        Comparison of optical biometry and applanation ultrasound measurements of the axial length of the eye.
        Saudi J Ophthalmol. 2014; 28: 287-291
        • Kaswin G.
        • Rousseau A.
        • Mgarrech M.
        • Barreau E.
        • Labetoulle M.
        Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard.
        J Cataract Refract Surg. 2014; 40: 593-600
        • Khambhiphant B.
        • Varadisai A.
        • Visalvate N.
        Intrapersonal comparison of initial axial length, keratometric readings, and intraocular lens power over a 6-month interval using an IOLMaster device.
        Clin Ophthalmol. 2014; 9: 21-24
        • Suheimat M.
        • Verkicharla P.K.
        • Mallen E.A.
        • Rozema J.J.
        • Atchison D.A.
        Refractive indices used by the Haag-Streit Lenstar to calculate axial biometric dimensions.
        Ophthalmic Phys Opt. 2015; 35: 90-96
        • Loudot C.
        • Zanin E.
        • Fogliarini C.
        • Boulze M.
        • Souchon L.
        • Denis D.
        Ocular biometry in children with hypermetropia: utility of the Lenstar LS 900 optical biometer.
        J Fr D Ophtalmol. 2011; 34: 369-375
        • Rajan M.S.
        • Keilhorn I.
        • Bell J.A.
        Partial coherence laser interferometry vs. conventional ultrasound biometry in intraocular lens power calculations.
        Eye (Lond). 2002; 16: 552-556
        • Findl O.
        • Drexler W.
        • Menapace R.
        • Heinzl H.
        • Hitzenberger C.K.
        • Fercher A.F.
        Improved prediction of intraocular lens power using partial coherence interferometry.
        J Cataract Refract Surg. 2001; 27: 861-867
        • Wang J.K.
        • Hu C.Y.
        • Chang S.W.
        Intraocular lens power calculation using the IOLMaster and various formulas in eyes with long axial length.
        J Cataract Refract Surg. 2008; 34: 262-267
        • Petermeier K.
        • Gekeler F.
        • Messias A.
        • Spitzer M.S.
        • Haigis W.
        • Szurman P.
        Intraocular lens power calculation and optimized constants for highly myopic eyes.
        J Cataract Refract Surg. 2009; 35: 1575-1581
        • Olsen T.
        Calculation of intraocular lens power: a review.
        Acta Ophthalmol Scand. 2007; 85: 472-485
        • Lee A.C.
        • Qazi M.A.
        • Pepose J.S.
        Biometry and intraocular lens power calculation.
        Curr Opin Ophthalmol. 2008; 19: 13-17
        • Jin H.
        • Rabsilber T.
        • Ehmer A.
        • et al.
        Comparison of ray-tracing method and thin-lens formula in intraocular lens power calculations.
        J Cataract Refract Surg. 2009; 35: 650-652
        • Aristodemou P.
        • Knox Cartwright N.E.
        • Sparrow J.M.
        • Johnston R.L.
        Formula choice Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry.
        J Cataract Refract Surg. 2011; 37: 63-71
        • Norrby S.
        Sources of error in intraocular lens power calculation.
        J Cataract Refract Surg. 2008; 34: 368-376
        • Guyer D.R.
        • Yanuzzi L.A.
        • Chang S.
        • Shields J.A.
        • Green W.R.
        Retina-vitreous-macula. Saunders, Philadelphia, PA1999
        • Vukojevi N.
        • Jakov T.
        • Juratovac Z.
        • et al.
        Axial eye length after retinal detachment surgery.
        Coll Antropol. 2005; 29: 2-27
        • Huang C.
        • Zhang T.
        • Liu J.
        • Tan R.
        • Qiang J.
        Changes in axial length and anterior chamber depth after rhegmatogenous retinal detachment repair.
        J Clin Exp Ophthalmol. 2014; 5: 377
        • Hennessy M.P.
        • Chan D.G.
        Contact versus immersion biometry for axial length before cataract surgery.
        J Cataract Refract Surg. 2003; 29: 2195-2198
        • Schelenz J.
        • Kammann J.
        Comparison of contact and immersion techniques for axial length measurement and implant power calculation.
        J Cataract Refract Surg. 1989; 15: 425-428
        • Yang Q.H.
        • Chen B.
        • Peng G.H.
        • Li Z.H.
        • Huang Y.F.
        Accuracy of axial length measurements from immersion B-scan ultrasonography in highly myopic eyes.
        Int J Ophthalmol. 2014; 7: 441-445
        • Kunavisarut P.
        • Poopattanakul P.
        • Intarated C.
        • Pathanapitoon K.
        Accuracy and reliability of IOL master and A-scan immersion biometry in silicone oil-filled eyes.
        Eye (Lond). 2012; 26: 1344-1348
        • Hill W.
        • Angeles R.
        • Otani T.
        Evaluation of a new IOLMaster algorithm to measure axial length.
        J Cataract Refract Surg. 2008; 34: 920-924
        • Watson A.
        • Armstrong R.
        Contact or immersion technique for axial length measurement.
        Aust N Z J Ophthalmol. 1999; 27: 49-51
        • Shammas H.J.
        A comparison of immersion and contact techniques for axial length measurements.
        J Cataract Refract Surg. 1984; 10: 444-447