been attributed to spontaneous PVD formation or spontaneous release of existing VMT, \(^5^,^6^,^7^,^8^\) even without any etiologic VMT.\(^7^,^8^\) Cases with documented persistent VMT or ERM have also demonstrated spontaneous improvement, despite an associated foveal detachment.\(^5^,^6^\) The anatomical characteristics, follow-up, and outcomes of the 6 previous reports are summarized in Table 1.

In conclusion, we report spontaneous anatomic and corresponding visual improvement in an increasingly symptomatic, \(-13\, D\) myopic eye with a macular detachment, prominent posterior staphyloma, pre-existing complete PVD, and no visible ERM over a 24-month period. It is important to recognize clinical features such as a complete PVD and absence of ERM, among others, that could possibly identify those eyes with myopic macular retinoschisis that may experience spontaneous improvement over time even if they are symptomatic at presentation.

Disclosure: The authors have no proprietary or commercial interest in any materials discussed in this article.

Acknowledgements: Funding/Support: Heed Ophthalmic Foundation (San Francisco, Calif.) and Ronald G. Michels Fellowship Foundation (Riderwood, Md.) (D.S.G.).

Bryce W. Polascik, Wenlan Zhang, Dilraj S. Grewal, Sharon Fekrat

Duke University, Durham, N.C.

Case of combination therapy to treat lupus retinal vasculitis refractory to steroids

Retinal vasculitis is a known ocular manifestation of systemic lupus erythematosus (SLE). This condition is characterized by inflammation and occlusion of retinal arterioles or venules, thought to be caused by the overproduction of antibodies and/or immune complexes associated with SLE. While the most predominant way to treat conditions associated with SLE remains corticosteroid therapy, certain patients may prove refractory to such an approach.\(^1^,^2^,^3^\) We present a case of severe retinal vasculitis that was refractory to steroid therapy but...
responded to a combination of plasmapheresis, intravenous (IV) rituximab, and intravitreal ranibizumab.

A 34-year-old Indian female diagnosed with SLE presented with painless vision loss in her right eye. The patient’s best-corrected visual acuity was no light perception (NLP) OD and 20/20 OS. Fundus examination of the right eye demonstrated diffuse retinal hemorrhage, pallid optic nerve swelling, diffusely swollen macula with a cherry-red appearance, and vascular sheathing. Fundus examination of the left eye was normal. The patient was admitted for IV high dose pulse steroids treatment (Solu-Medrol (Pfizer) 1 g daily).

Three days postadmission, the patient began complaining of blurry vision in the left eye despite treatment. Visual acuity declined to 20/400 OS, and fundus examination demonstrated diffuse macular edema, retinal arteriolar sheathing, hemorrhage, and swollen optic nerve (Fig. 1). The right eye remained with NLP vision. Given these changes, the patient was diagnosed with refractory retinal vasculitis. She underwent plasmapheresis therapy (5 sessions over a 10-day span) and bilateral administration of intravitreal ranibizumab (0.5 mg). Postplasmapheresis, the patient also underwent IV rituximab therapy.

Three weeks following this therapy, visual acuity was light perception (LP) OD and 20/70 OS. She was discharged with a prescription of 60 mg oral prednisone daily. One month later, visual acuity improved to 20/40 OS and fundus examination demonstrated resolution of retinal vasculitis in the left eye. At her 1-year follow-up, visual acuity was LP OD and 20/30 OS with a normal fundus appearance in the left eye (Fig. 2).

Uncontrolled retinal vasculitis can lead to vaso-occlusive complications, including macular ischemia, neovascularization, vitreous hemorrhage, and tractional retinal detachment. These complications may yield irreversible vision loss as demonstrated by the right eye of the patient. Early intervention and aggressive corticosteroid therapy is the mainstay of treatment. However, some SLE patients may be refractory to corticosteroid therapy and require further aggressive immunosuppression. Only 3 reports of refractory SLE retinal vasculitis have been published in the literature, using plasmapheresis and rituximab, rituximab alone, or plasmapheresis alone.1-3 All of these reports had varying degrees of visual success.

The apparent resolution of retinal vasculitis in this patient was likely due to a combined effect of her therapy.

Fig. 1—A, Colour fundus of the left eye, showing retinal venule staining and occlusive vasculitis. Note the optic nerve swelling and retinal vascular sheathing. B, Intravenous fluorescein angiography (IVFA) of the left eye, showing retinal venule staining and occlusive vasculitis.

Fig. 2—A, Colour fundus of the left eye, demonstrating sustained resolution of retinal vasculitis. B, Intravenous fluorescein angiography (IVFA) of the left eye, demonstrating sustained resolution of retinal vasculitis.
The underlying mechanism of SLE retinal vasculitis, although not clearly understood, is thought to involve immune complex deposition in the arterioles and antibody-mediated inflammation of the vessel wall leading to retinal damage. Plasmapheresis is believed to provide a significant and immediate reduction of such intravascular inflammatory complexes. Rituximab, an anti-CD20 chimeric antibody, is believed to provide a sustained suppression of new inflammatory mediators by selectively targeting B cells, which are central in the pathogenesis of SLE. Ranibizumab, an antivascular endothelial growth factor (VEGF), may have also been beneficial in reducing macular edema; however, there are limited reports for its use in this context, with the exception of a report using it as an adjunct therapy for retinal vasculitis of a different etiology. Although its presumed clinical effect in these cases is to control neovascularization and limit excess VEGF, further definitive therapeutic studies are warranted.

To the best of our knowledge, this is the first report of refractory retinal vasculitis in an SLE patient having been successfully treated with this specific combination. Her improvement suggests that more investigation into combination immunosuppressive therapy for refractory retinal vasculitis may be warranted, particularly with these agents.

Nadeem Ali Dhirani, BSc, Vandana Ahluwalia, MD, FRCP, Sohel Somani, MD, FRCP

Wayne State University, School of Medicine, Detroit, Mich; William Osler Health System, Brampton, Ont; *University of Toronto, Toronto, Ont; †Uptown Eye Specialists, Brampton, Ont.

References

Corneal etching in femtosecond laser-assisted cataract surgery

Femtosecond laser technology can be used in cataract surgery to perform the capsulotomy, lens fragmentation, and corneal incisions. Compared to traditional cataract surgery, femtosecond laser-assisted cataract surgery (FLACS) can offer potential advantages such as enhanced intraocular lens centration and decreased phacoemulsification power. However, the potential for increased utility and safety over conventional techniques has not been definitively established. Though FLACS is generally a safe procedure, complications can include suction loss, anterior capsule tears or tags, posterior capsule rupture, dropped nuclei, or vitreous loss. We present a case in which a partial lens fragmentation pattern was found etched onto a patient’s cornea after FLACS, despite the absence of any apparent intraoperative complications.

Case Report

An 86-year-old Caucasian male patient was found to have bilateral visually significant cataracts. He had no significant ocular history or prior ocular surgeries. Preoperatively, best corrected distance visual acuity (BCVA) was 20/60 OU. Intraocular pressure (IOP) was 17 mm Hg in the right eye and 18 mm Hg in the left eye. The corneas were clear bilaterally, and the lens opacities in both eyes were classified grade 3 according to the Lens Opacification Classification System III scale. The patient elected to have routine FLACS in the left eye using the LensAR femtosecond laser system (LensAR, Inc, Orlando, Fla.).

At the time of surgery, the patient was placed supine with head and eyes in primary gaze. A disposable fluid-interface suction ring was applied to the sclera of the left eye with good centration. A lid speculum was not required, as the suction ring was rolled under the upper and lower lids. The suction ring was filled with a balanced salt solution to facilitate tight seal. Vacuum suction was initiated without complication. The laser platform was docked to the suction ring in close apposition to the corneal apex. After alignment was achieved the docking system was locked into place.

The built-in LensAR proprietary software recapitulated anterior segment structures and automatically determined patient-specific treatment parameters for anterior