Advertisement

Short wavelengths filtering properties of sunglasses on the Canadian market: are we protected?

  • Nataly Trang
    Affiliations
    Département d’ophtalmologie et d’ORL-CCF, Faculté de médecine, Université Laval, Québec, Que

    Centre universitaire d'ophtalmologie, Hôpital du Saint-Sacrement, CHU de Québec, Québec, Que

    Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec, Que
    Search for articles by this author
  • Gilles Lalonde
    Affiliations
    Département d’ophtalmologie et d’ORL-CCF, Faculté de médecine, Université Laval, Québec, Que

    Centre universitaire d'ophtalmologie, Hôpital du Saint-Sacrement, CHU de Québec, Québec, Que
    Search for articles by this author
  • Yolande Dubé
    Affiliations
    Département d’ophtalmologie et d’ORL-CCF, Faculté de médecine, Université Laval, Québec, Que

    Centre universitaire d'ophtalmologie, Hôpital du Saint-Sacrement, CHU de Québec, Québec, Que
    Search for articles by this author
  • Serge Bourgault
    Affiliations
    Département d’ophtalmologie et d’ORL-CCF, Faculté de médecine, Université Laval, Québec, Que

    Centre universitaire d'ophtalmologie, Hôpital du Saint-Sacrement, CHU de Québec, Québec, Que
    Search for articles by this author
  • Patrick J. Rochette
    Correspondence
    Correspondence to Patrick J. Rochette, PhD, Centre de recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, 1050 chemin Ste-Foy, Québec, Que. G1S 4L8
    Affiliations
    Département d’ophtalmologie et d’ORL-CCF, Faculté de médecine, Université Laval, Québec, Que

    Centre universitaire d'ophtalmologie, Hôpital du Saint-Sacrement, CHU de Québec, Québec, Que

    Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec–Université Laval, Hôpital du Saint-Sacrement, Québec, Que

    Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Que
    Search for articles by this author
Published:November 24, 2017DOI:https://doi.org/10.1016/j.jcjo.2017.09.006

      Abstract

      Background

      Exposure to solar radiation is a risk factor for multiple ocular pathologies. Ultraviolet (UV) radiation is involved in ocular diseases, including pterygium, ocular surface squamous neoplasia, and cataracts. High-energy visible light (HEV) is associated with age-related macular degeneration. Ocular protection against solar radiation seems essential to protect our eyes against the adverse effects of those harmful rays. Australia, New Zealand, Europe, and the United States are the only regions with mandatory standards for UV transmission for sunglasses. Adherence to Canadian standards by sunglasses manufacturers is not mandatory. In this study, we evaluated the UV and visible transmission of sunglasses in the Canadian market to test their compliance with Canadian standards.

      Methods

      The transmittance of 207 pairs of sunglasses, divided in 3 categories according to their price range, was measured.

      Results

      We show that close to 100% of the sunglasses tested respect the Canadian standards. The average HEV transmittance is around 10%, regardless the price range.

      Conclusions

      Our study demonstrated that even if following Canadian standards is optional, most sunglasses sold on the Canadian market follow national and international standards. We also found that sunglasses filter around 90% of HEV. With the recent findings on the potential effects of HEV in retinal pathologies, we can ask whether this filtering capacity is sufficient to protect eyes from harmful HEV light. More work needs to be done to determine acceptable HEV light transmission limits to the existing Canadian standards.

      RÉSUMÉ

      Contexte

      L’exposition aux rayonnements solaires représente un facteur de risque de bon nombre de troubles visuels. Les rayons ultraviolets (UV) sont mis en cause dans certaines affections oculaires, notamment le ptérygion, la néoplasie squameuse de la surface oculaire et les cataractes. La lumière à haute énergie visible (HEV, pour high-energy visible light) est associée à la dégénérescence maculaire liée à l’âge (DMLA). Il semble essentiel de se protéger les yeux contre les rayonnements solaires nocifs pour éviter leurs effets indésirables. Or, l’Australie, la Nouvelle-Zélande, l’Europe et les États-Unis sont les seules régions qui imposent des normes en matière de transmission des rayons UV aux fabricants de lunettes de soleil. En effet, les fabricants canadiens ne sont pas tenus de respecter les normes en vigueur dans leur pays. Nous avons évalué, dans le cadre de cette étude, la transmission des rayons UV et de la lumière visible par des lunettes de soleil offertes sur le marché canadien afin de mesurer à quel point elles respectent les normes canadiennes.

      Méthodes

      On a mesuré la transmission de 207 paires de lunettes de soleil qui ont été divisées en 3 catégories en fonction de leur prix.

      Résultats

      Près de 100 % des lunettes de soleil testées respectaient les normes canadiennes. La transmission de la HEV oscille autour de 10 % en moyenne, peu importe le prix.

      Conclusions

      Notre étude permet de constater que, même si le respect des normes canadiennes n’est pas obligatoire, la plupart des lunettes de soleil vendues au Canada respectent les normes nationales et internationales. De plus, les lunettes de soleil filtrent quelque 90 % de la HEV. Compte tenu des découvertes récentes au sujet des effets potentiels de la HEV sur la rétine, nous pouvons nous demander si cela suffit à protéger les yeux des effets nocifs de la HEV. D’autres études devront être réalisées afin de déterminer le degré acceptable de transmission de la HEV par rapport aux normes canadiennes actuelles.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • International Commission on Non-Ionizing Radiation Protection
        Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation).
        Health Phys. 2004; 87: 171-186
        • Behar-Cohen F.
        • Baillet G.
        • De Ayguavives T.
        • et al.
        Ultraviolet damage to the eye revisited: eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear.
        Clin Ophthalmol. 2014; 8: 87-104
        • Sliney D.H.
        Geometrical assessment of ocular exposure to environmental UV radiation—implications for ophthalmic epidemiology.
        J Epidemiol. 1999; 9: S22-S32
        • Behar-Cohen F.
        • Martinsons C.
        • Viénot F.
        • et al.
        Light-emitting diodes (LED) for domestic lighting: any risks for the eye?.
        Prog Retin Eye Res. 2011; 30: 239-257
        • Sliney D.H.
        How light reaches the eye and its components.
        Int J Toxicol. 2002; 21: 501-509
        • Hoover H.L.
        Solar ultraviolet irradiation of human cornea, lens, and retina: equations of ocular irradiation.
        Appl Opt. 1986; 25: 359-368
        • Cullen A.P.
        Photokeratitis and other phototoxic effects on the cornea and conjunctiva.
        Int J Toxicol. 2002; 21: 455-464
        • Oliva M.S.
        • Taylor H.
        Ultraviolet radiation and the eye.
        Int Ophthalmol Clin. 2005; 45: 1-17
        • Gray R.H.
        • Johnson G.J.
        • Freedman A.
        Climatic droplet keratopathy.
        Surv Ophthalmol. 1992; 36: 241-253
        • Klintworth G.K.
        Chronic actinic keratopathy—a condition associated with conjunctival elastosis (pingueculae) and typified by characteristic extracellular concretions.
        Am J Pathol. 1972; 67: 327-348
        • Pe’er J.
        Ocular surface squamous neoplasia: evidence for topical chemotherapy.
        Int Ophthalmol Clin. 2015; 55: 9-21
        • Hiller R.
        • Giacometti L.
        • Yuen K.
        Sunlight and cataract: an epidemiologic investigation.
        Am J Epidemiol. 1977; 105: 450-459
        • Taylor H.R.
        The environment and the lens.
        Br J Ophthalmol. 1980; 64: 303-310
        • Hollows F.
        • Moran D.
        Cataract—the ultraviolet risk factor.
        Lancet. 1981; 2: 1249-1250
        • Cruickshanks K.J.
        • Klein B.E.
        • Klein R.
        Ultraviolet light exposure and lens opacities: the Beaver Dam Eye Study.
        Am J Public Health. 1992; 82: 1658-1662
        • West S.K.
        • Duncan D.D.
        • Munoz B.
        • et al.
        Sunlight exposure and risk of lens opacities in a population-based study: the Salisbury Eye Evaluation project.
        J Am Med Assoc. 1998; 280: 714-718
        • Delcourt C.
        • Carriere I.
        • Ponton-Sanchez A.
        • Lacroux A.
        • Covacho M.J.
        • Papoz L.
        Light exposure and the risk of cortical, nuclear, and posterior subcapsular cataracts: the Pathologies Oculaires Liées à l’Age (POLA) study.
        Arch Ophthalmol. 2000; 118: 385-392
        • Vajdic C.M.
        • Kricker A.
        • Giblin M.
        • et al.
        Sun exposure predicts risk of ocular melanoma in Australia.
        Int J Cancer. 2001; 101: 175-182
        • Seddon J.M.
        • Gragoudas E.S.
        • Glynn R.J.
        • Egan K.M.
        • Albert D.M.
        • Blitzer P.H.
        Host factors, UV radiation, and risk of uveal melanoma. A case–control study.
        Arch Ophthalmol. 1990; 108: 1274-1280
        • Pane A.R.
        • Hirst L.W.
        Ultraviolet light exposure as a risk factor for ocular melanoma in Queensland, Australia.
        Ophthalmic Epidemiol. 2000; 7: 159-167
        • Guenel P.
        • Laforest L.
        • Cyr D.
        • et al.
        Occupational risk factors, ultraviolet radiation, and ocular melanoma: a case–control study in France.
        Cancer Causes Control. 2001; 12: 451-459
        • Shah C.P.
        • Weis E.
        • Lajous M.
        • Shields J.A.
        • Shields C.L.
        Intermittent and chronic ultraviolet light exposure and uveal melanoma: a meta-analysis.
        Ophthalmology. 2005; 112: 1599-1607
        • Tomany S.C.
        • Cruickshanks K.J.
        • Klein R.
        • Klein B.E.
        • Knudtson M.D.
        Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study.
        Arch Ophthalmol. 2004; 122: 750-757
        • Taylor H.R.
        • West S.
        • Munoz B.
        • Rosenthal F.S.
        • Bressler S.B.
        • Bressler N.M.
        The long-term effects of visible light on the eye.
        Arch Ophthalmol. 1992; 110: 99-104
        • Klein R.
        • Klein B.E.
        • Jensen S.C.
        • Cruickshanks J.K.
        The relationship of ocular factors to the incidence and progression of age related maculopathy.
        Arch Ophthalmol. 1998; 116: 506-513
        • Gies P.
        Australia has more than enough solar UV radiation.
        Clin Exp Optom. 2003; 86: 71-73
        • van der Hoeve J.
        Eye lesions produced by light rich in ultraviolet rays: senile cataract senile degeneration of the macula.
        Am J Ophthalmol. 1920; 3: 178-194
        • Roberts J.E.
        Ocular phototoxicity.
        J Photochem Photobiol B Biol. 2001; 64: 136-143
        • Noell W.K.
        Possible mechanisms of photoreceptor damage by light in mammalian eyes.
        Vision Res. 1980; 20: 1163-1171
        • Wielgus A.R.
        • Collier R.J.
        • Martin E.
        • et al.
        Blue light induced A2E oxidation in rat eyes—Experimental animal model of dry AMD.
        Photochem Photobiol Sci. 2010; 9: 1505-1512
        • Boulton M.
        • Dontsov A.
        • Jarvis-Evans J.
        • Ostrovsky M.
        • Svistunenko D.
        Lipofuscin is a photoinducible free radical generator.
        J Photochem Photobiol B. 1993; 19: 201-204
        • Sparrow J.R.
        • Nakanishi K.
        • Parish C.A.
        The lipofuscin fluorophore A2E mediates blue light induced damage to retinal pigmented epithelial cells.
        Invest Ophthalmol Vis Sci. 2000; 41: 1981-1989
        • Sparrow J.R.
        • Zhou J.
        • Ben-Shabat S.
        • Vollmer H.
        • Itagaki Y.
        • Nakanishi K.
        Involvement of oxidative mechanisms in blue-light induced damage to A2E-laden RPE.
        Invest Ophthalmol Vis Sci. 2002; 43: 1222-1227
        • Pawlak A.
        • Wrona M.
        • Rozanowska M.
        • et al.
        Comparison of the aerobic photoreactivity of A2E with its precursor retinal.
        Photochem Photobiol. 2003; 77: 253-258
        • Rozanowska M.
        • Jarvis-Evans J.
        • Korytowski W.
        • Boulton M.E.
        • Burke J.M.
        • Sarna T.
        Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species.
        J Biol Chem. 1995; 270: 18825-18830
        • Davies S.
        • Elliott M.H.
        • Floor E.
        • et al.
        Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells.
        Free Radic Biol Med. 2001; 31: 256-265
        • Hyman L.G.
        • Lilienfeld A.M.
        • Ferris 3rd, F.L.
        • Fine S.L.
        Senile macular degeneration: a case–control study.
        Am J Epidemiol. 1983; 118: 213-227
        • Biometry and Epidemiology Program, National Eye Institute
        Risk factors for neovascular age-related macular degeneration. The Eye Disease Case–Control Study Group.
        Arch Ophthalmol. 1992; 110: 1701-1708
        • West S.K.
        • Rosenthal F.S.
        • Bressler N.M.
        • et al.
        Exposure to sunlight and other risk factors for age-related macular degeneration.
        Arch Ophthalmol. 1989; 107: 875-879
      1. Health Canada. Sunglasses. Available at: http://www.hc-sc.gc.ca/hl-vs/iyh-vsv/prod/glasses-lunettes-eng.php. Accessed April 10, 2015.

      2. American National Standards. Nonprescription sunglass and fashion eyewear requirements. Available at: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+Z80.3-2015&source=blog. Accessed April 25, 2016.

      3. Australian/New Zealand Standard. Eye and face protection-Sunglasses and fashion spectacles–Part 1: Requirements. Available at: https://shop.standards.govt.nz/catalog/1067.1:2016(AS|NZS)/scope? Accessed April 25, 2017.
      4. EU Sunglasses Standard–Transition Period Extended for EN ISO 12312–1 Amended. Available at: https://www.iso.org/standard/51351.html/. Accessed April 10, 2015.