Advertisement

Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the Anatomic Positioning System in glaucoma patients

Published:August 22, 2018DOI:https://doi.org/10.1016/j.jcjo.2018.05.007

      ABSTRACT

      Objective

      To determine the test−retest repeatability of minimum rim width and retinal nerve fibre layer thickness measurements obtained by spectral-domain optical coherence tomography using the Anatomic Positioning System protocol in glaucoma patients and controls. Also, to assess the ability of the minimum rim width and retinal nerve fibre layer thickness to diagnose glaucoma in 2 circular peripapillary locations.

      Methods

      Spectral domain optical coherence tomography scans of the optic nerve head were obtained twice during the same visit using the Anatomic Positioning System eye-tracking protocol. The minimum rim width and retinal nerve fibre layer thickness were measured at 3 circular diameters (3.5 mm, 4.1 mm, and 4.7 mm). Intraclass correlation coefficients and area under the receiver operating characteristic were calculated for these parameters.

      Results

      A total of 36 glaucomatous eyes and 59 control eyes were included in the analysis. The intraclass correlation coefficients of minimum rim width and retinal nerve fibre layer thickness global measurement for 3.5 mm and 4.1 mm circles ranged between 0.98 and 1.00 and for 4.7 mm circle was between 0.76 and 1.00. The minimum rim width had an area under the receiver operating characteristic of 0.97, while the retinal nerve fibre layer thickness measurements had an area under the receiver operating characteristic of 0.95, 0.95, and 0.96 for the 3.5 mm, 4.1 mm, and 4.7 mm circles, respectively.

      Conclusions

      The minimum rim width and retinal nerve fibre layer thickness measurements using the Anatomic Positioning System protocol had overall excellent reproducibility and diagnostic performance. Using this protocol and the novel minimum rim width parameter may be useful in more accurate diagnosis and follow-up of patients with glaucoma.

      RÉsumÉ

      Objectif

      Déterminer la reproductibilité de type test-retest des mesures de l’épaisseur minimale de l'anneau neurorétinien et de l’épaisseur de la couche de fibres nerveuses de la rétine, obtenues par tomographie par cohérence optique en domaine spectral (SD-OCT, pour spectral domain optical coherence tomography) d'après le protocole du système de positionnement anatomique (APS, pour Anatomic Positioning System), chez des patients glaucomateux et normaux. Évaluer également s'il est possible de diagnostiquer le glaucome en mesurant l’épaisseur minimale de l'anneau neurorétinien et l’épaisseur de la couche de fibres nerveuses de la rétine dans 2 zones circulaires péripapillaires.

      Méthodes

      On a obtenu deux séries d'images SD-OCT de la tête du nerf optique au cours de la même visite à l'aide de la technique de suivi du regard, conformément au protocole APS. L’épaisseur minimale de l'anneau neurorétinien et l’épaisseur de la couche de fibres nerveuses de la rétine ont été mesurées à 3 diamètres circulaires (3,5 mm, 4,1 mm et 4,7 mm). Ont été calculés les coefficients de corrélation intraclasse de même que l'aire sous la courbe ROC (receiver operating characteristic) pour chacun de ces paramètres.

      Résultats

      Au total, 36 yeux glaucomateux et 59 yeux témoins ont été inclus dans cette analyse. Les coefficients de corrélation intraclasse des mesures globales de l’épaisseur minimale de l'anneau neurorétinien et de l’épaisseur de la couche de fibres nerveuses de la rétine se situaient entre 0,98 et 1,00 pour les diamètres de 3,5 mm et de 4,1 mm, et entre 0,76 et 1,00 pour le diamètre de 4,7 mm. L'aire sous la courbe ROC de l’épaisseur minimale de l'anneau neurorétinien se chiffrait à 0,97, comparativement à 0,95, à 0,95 et à 0,96 pour les diamètres de 3,5 mm, de 4,1 mm et de 4,7 mm, respectivement, dans le cas des mesures de l’épaisseur de la couche de fibres nerveuses de la rétine.

      Conclusions

      La reproductibilité et la performance diagnostique des mesures de l’épaisseur minimale de l'anneau neurorétinien et de l’épaisseur de la couche de fibres nerveuses de la rétine obtenues au moyen du protocole APS étaient excellentes. Grâce à ce protocole et au nouveau paramètre de l’épaisseur minimale de l'anneau neurorétinien, il pourrait devenir possible d'obtenir un diagnostic plus précis du glaucome et d'assurer un meilleur suivi des patients atteints.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Quigley HA.
        Glaucoma.
        Lancet. 2011; 377: 1367−77
        • Weinreb RN
        • Aung T
        • Medeiros FA
        The pathophysiology and treatment of glaucoma: a review.
        JAMA. 2014; 311: 1901−11
        • Tham YC
        • Li X
        • Wong TY
        • Quigley HA
        • Aung T
        • Cheng CY
        Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis.
        Ophthalmology. 2014; 121: 2081−90
        • Hood DC
        • Kardon RH
        A framework for comparing structural and functional measures of glaucomatous damage.
        Prog Retin Eye Res. 2007; 26: 688−710
        • Harwerth RS
        • Vilupuru AS
        • Rangaswamy NV
        • Smith 3rd, EL
        The relationship between nerve fibre layer and perimetry measurements.
        Invest Ophthalmol Vis Sci. 2007; 48: 763−73
        • Wollstein G
        • Schuman JS
        • Price LL
        • et al.
        Optical coherence tomography longitudinal evaluation of retinal nerve fibre layer thickness in glaucoma.
        Arch Ophthalmol. 2005; 123: 464−70
        • Medeiros FA
        • Alencar LM
        • Zangwill LM
        • Bowd C
        • Sample PA
        • Weinreb RN
        Prediction of functional loss in glaucoma from progressive optic disc damage.
        Arch Ophthalmol. 2009; 127: 1250−6
        • Quigley HA
        • Dunkelberger GR
        • Green WR
        Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma.
        Am J Ophthalmol. 1989; 107: 453−64
        • Harwerth RS
        • Carter-Dawson L
        • 3rd Smith EL
        • Barnes G
        • Holt WF
        • Crawford ML
        Neural losses correlated with visual losses in clinical perimetry.
        Invest Ophthalmol Vis Sci. 2004; 45: 3152−60
        • Kerrigan-Baumrind LA
        • Quigley HA
        • Pease ME
        • Kerrigan DF
        • Mitchell RS
        Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.
        Invest Ophthalmol Vis Sci. 2000; 41: 741−48
        • Medeiros FA
        • Lisboa R
        • Weinreb RN
        • Liebmann JM
        • Girkin C
        • Zangwill LM
        Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma.
        Ophthalmology. 2013; 120: 736−44
        • Medeiros FA
        • Zangwill LM
        • Bowd C
        • Mansouri K
        • Weinreb RN
        The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change.
        Invest Ophthalmol Vis Sci. 2012; 53: 6939−46
        • Bowd C
        • Zangwill LM
        • Berry CC
        • et al.
        Detecting early glaucoma by assessment of retinal nerve fibre layer thickness and visual function.
        Invest Ophthalmol Vis Sci. 2001; 42: 1993−2003
        • Wadhwani M
        • Bali SJ
        • Satyapal R
        • et al.
        Test-retest variability of retinal nerve fibre layer thickness and macular ganglion cell-inner plexiform layer thickness measurements using spectral-domain optical coherence tomography.
        J Glaucoma. 2015; 24: e109−15
        • Vazirani J
        • Kaushik S
        • Pandav SS
        • Gupta P
        Reproducibility of retinal nerve fibre layer measurements across the glaucoma spectrum using optical coherence tomography.
        Indian J Ophthalmol. 2015; 63: 300−5
        • Rao HL
        • Zangwill LM
        • Weinreb RN
        • Sample PA
        • Alencar LM
        • Medeiros FA
        Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis.
        Ophthalmology. 2010; 117: 1692−9
        • Leung CK
        • Choi N
        • Weinreb RN
        • et al.
        Retinal nerve fibre layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma.
        Ophthalmology. 2010; 117: 2337−44
        • Leite MT
        • Rao HL
        • Zangwill LM
        • Weinreb RN
        • Medeiros FA
        Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma.
        Ophthalmology. 2011; 118: 1334−9
        • Lisboa R
        • Leite MT
        • Zangwill LM
        • Tafreshi A
        • Weinreb RN
        • Medeiros FA
        Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography.
        Ophthalmology. 2012; 119: 2261−9
        • Mwanza JC
        • Oakley JD
        • Budenz DL
        • Anderson DR
        • Cirrus Optical Coherence Tomography Normative Database Study G
        Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes.
        Ophthalmology. 2011; 118: 241−8
        • Leung CK
        • Lam S
        • Weinreb RN
        • et al.
        Retinal nerve fibre layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fibre layer map for glaucoma detection.
        Ophthalmology. 2010; 117: 1684−91
        • Jonas JB
        • Fernandez MC
        • Sturmer J
        Pattern of glaucomatous neuroretinal rim loss.
        Ophthalmology. 1993; 100: 63−8
        • Chauhan BC
        • Burgoyne CF
        From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change.
        Am J Ophthalmol. 2013; 156: 218−27
        • Reis AS
        • Sharpe GP
        • Yang H
        • Nicolela MT
        • Burgoyne CF
        • Chauhan BC
        Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography.
        Ophthalmology. 2012; 119: 738−47
        • Hu Z
        • Abramoff MD
        • Kwon YH
        • Lee K
        • Garvin MK
        Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head.
        Invest Ophthalmol Vis Sci. 2010; 51: 5708−17
        • Abramoff MD
        • Lee K
        • Niemeijer M
        • et al.
        Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head.
        Invest Ophthalmol Vis Sci. 2009; 50: 5778−84
        • Mwanza JC
        • Chang RT
        • Budenz DL
        • et al.
        Reproducibility of peripapillary retinal nerve fibre layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes.
        Invest Ophthalmol Vis Sci. 2010; 51: 5724−30
        • Reis AS
        • O'Leary N
        • Yang H
        • et al.
        Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation.
        Invest Ophthalmol Vis Sci. 2012; 53: 1852−60
        • Chen TC.
        Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fibre layer (an AOS thesis).
        Trans Am Ophthalmol Soc. 2009; 107: 254−81
        • Povazay B
        • Hofer B
        • Hermann B
        • et al.
        Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis.
        J Biomed Opt. 2007; 12041204
        • Chauhan BC
        • O'Leary N
        • Almobarak FA
        • et al.
        Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter.
        Ophthalmology. 2013; 120: 535−43
        • Garway-Heath DF
        • Poinoosawmy D
        • Fitzke FW
        • Hitchings RA
        Mapping the visual field to the optic disc in normal tension glaucoma eyes.
        Ophthalmology. 2000; 107: 1809−15
        • Fleiss JL
        Reliability of measurement.
        The Design and Analysis of Clinical Experiments. John Wiley & Sons, Hoboken, N.J.1999: 1−32
        • Tape TG
        The Area under an ROC curve.
        Interpreting Diagnostic Tests. 2015; (The Darwin Web Serve Available at: gim.unmc.edu/dxtests/ROC3.htm. Accessed November 28, 2015)
        • Pollet-Villard F
        • Chiquet C
        • Romanet JP
        • Noel C
        • Aptel F
        Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fibre layer and optic nerve head measurements.
        Invest Ophthalmol Vis Sci. 2014; 55: 2953−62
        • Mizumoto K
        • Gosho M
        • Zako M
        Correlation between optic nerve head structural parameters and glaucomatous visual field indices.
        Clin Ophthalmol. 2014; 8: 1203−8
        • Varma R
        • Skaf M
        • Barron E
        Retinal nerve fibre layer thickness in normal human eyes.
        Ophthalmology. 1996; 103: 2114−9
        • Savini G
        • Zanini M
        • Carelli V
        • Sadun AA
        • Ross-Cisneros FN
        • Barboni P
        Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study.
        Br J Ophthalmol. 2005; 89: 489−92
        • Alasil T
        • Wang K
        • Keane PA
        • et al.
        Analysis of normal retinal nerve fibre layer thickness by age, sex, and race using spectral domain optical coherence tomography.
        J Glaucoma. 2013; 22: 532−41
        • Arthur SN
        • Smith SD
        • Wright MM
        • et al.
        Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT.
        Eye (Lond). 2011; 25: 192−200
        • Langenegger SJ
        • Funk J
        • Toteberg-Harms M
        Reproducibility of retinal nerve fibre layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes.
        Invest Ophthalmol Vis Sci. 2011; 52: 3338−44