Predicting visual outcome after open globe injury using classification and regression tree model: the Moradabad ocular trauma study

Published:October 19, 2018DOI:



      This study was conducted to identify factors associated with visual outcome in patients with open globe injuries (OGIs).


      Retrospective case series of OGIs presenting to a tertiary eye care institute in North India from October 2009 to December 2016.


      A total of 157 patients with open globe injury have been included in the study. Multivariate analysis to ascertain the effects of different identified variables on the likelihood of poor visual outcome was done using binomial logistic regression. “Visual survival” (counting fingers or better) versus “minimal/no vision” (hand motion, light perception, and no light perception) was predicted using the classification and regression tree (CART) model. Main outcome measures were visual outcomes, risk factors, and rates of postoperative complications.


      Univariate analysis determined 9 predictors associated with poor visual outcome. Out of these, presence of relative afferent pupillary defect (RAPD), poor presenting visual acuity, presence of adnexal injuries, and location of injuries were the most significant predictors of vision loss. Absence of RAPD led to 79% chance of vision survival. Sixty-eight percent of patients with RAPD and initial visual acuity (VA) of less than 6/60 resulted in poor vision.


      The CART model is useful in predicting final VA based on some prognostic factors present initially.



      Cette étude visait à identifier les facteurs qui déterminaient les résultats visuels chez des patients ayant subi un traumatisme oculaire à globe ouvert.


      Étude rétrospective d'une série de cas portant sur des sujets ayant subi un traumatisme à globe ouvert (TGO) et qui se sont présentés à un établissement de soins oculaires tertiaires dans le nord de l'Inde d'octobre 2009 à décembre 2016.


      Au total, 157 patients qui présentaient un TGO ont pris part à l’étude. On a réalisé une analyse multivariée reposant sur une régression logistique binomiale pour vérifier les effets de différentes variables prédéterminées sur le risque de résultats visuels médiocres. On a ainsi émis des prévisions de type « survie visuelle » (pouvoir au moins compter des doigts) vs « vision minime/absence de vision » (mouvement de la main, perception de la lumière et absence de perception de la lumière) en s'appuyant sur le modèle CART (classification and regression tree). Les principaux paramètres de mesure étaient les suivants : résultats visuels, facteurs de risque et taux de complications postopératoires.


      L'analyse univariée a établi 9 facteurs de prédiction associés à des résultats visuels médiocres. De ce nombre, la présence d'un déficit pupillaire afférent relatif (DPAR), la faible acuité visuelle initiale, la présence de lésions des annexes et la localisation des blessures étaient les facteurs de prédiction les plus significatifs d'une perte de vision. L'absence de DPAR s'accompagnait d'un taux de 79 % de survie visuelle. Soixante-huit pour cent des patients qui avaient un DPAR et une acuité visuelle initiale de moins de 6/60 finissaient par avoir des résultats visuels médiocres.


      Le modèle CART est utile pour prédire l'acuité visuelle finale en fonction de la présence de certains facteurs pronostiques au départ.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Parver LM
        Eye trauma: the neglected disorder.
        Arch Ophthalmol. 1986; 104: 1452−3
        • Soliman MM
        • Macky TA
        Pattern of ocular trauma in Egypt.
        Graefes Arch Clin Exp Ophthalmol. 2008; 246: 205−12
        • Khatry SK
        • Lewis AE
        • Schein OD
        • Thapa MD
        • Pradhan EK
        • Katz J
        The epidemiology of ocular trauma in rural Nepal.
        Br J Ophthalmol. 2004; 88: 456−60
        • Chen Z
        • Li SM
        Trauma of the globe: state of art in global and in China.
        Chin J Traumatol. 2016; 19: 317−8
        • Négrel AD
        • Thylefors B
        The global impact of eye injuries.
        Ophthalmic Epidemiol. 1998; 5: 143−69
        • Badrinath SS
        Ocular trauma.
        Indian J Ophthalmol. 1987; 35: 110−1
        • Vats S
        • Murthy GV
        • Chandra M
        • Gupta SK
        • Vashist P
        • Gogoi M
        Epidemiological study of ocular trauma in an urban slum population in Delhi, India.
        Indian J Ophthalmol. 2008; 56: 313−6
        • Nirmalan PK
        • Katz J
        • Tielsch JM
        • et al.
        Ocular trauma in a rural south Indian population: the Aravind Comprehensive Eye Survey.
        Ophthalmology. 2004; 111: 1778−81
        • Dandona L
        • Dandona R
        • Srinivas M
        • John RK
        • McCarty CA
        • Rao GN
        Ocular trauma in an urban population in southern India: the Andhra Pradesh Eye Disease Study.
        Clin Exp Ophthalmol. 2000; 28: 350−6
        • Tripathy K
        • Chawla R
        • Venkatesh P
        • Vohra R
        • Sharma YR
        Clinical profile of medicolegal cases presenting to the eye casualty in a tertiary care center in India.
        Indian J Ophthalmol. 2016; 64: 422−6
        • Shukla B
        • Agrawal R
        • Shukla D
        • Seen S
        Systematic analysis of ocular trauma by a new proposed ocular trauma classification.
        Indian J Ophthalmol. 2017; 65: 719−22
        • Chiquet C
        • Zech JC
        • Gain P
        • Adeleine P
        • Trepsat C
        Visual outcome and prognostic factors after magnetic extraction of posterior segment foreign bodies in 40 cases.
        Br J Ophthalmol. 1998; 82: 801−6
        • De Juan Jr, E
        • Sternberg Jr, P
        • Michels RG
        Penetrating ocular injuries: types of injuries and visual results.
        Ophthalmology. 1983; 90: 1318−22
        • Gilbert CM
        • Soong HK
        • Hirst LW
        A two-year prospective study of penetrating ocular trauma at the Wilmer Ophthalmological Institute.
        Ann Ophthalmol. 1987; 19: 104−6
        • Groessl S
        • Nanda SK
        • Mieler WF
        Assault-related penetrating ocular injury.
        Am J Ophthalmol. 1993; 116: 26−33
        • Matthews GP
        • Das A
        • Brown S
        Visual outcome and ocular survival in patients with retinal detachments secondary to open or closed-globe injuries.
        Ophthalmic Surg Lasers Imaging Retina. 1998; 29: 48−54
        • Pieramici DJ
        • MacCumber MW
        • Humayun MU
        • Marsh MJ
        • de Juan Jr, E
        Open-globe injury: update on types of injuries and visual results.
        Ophthalmology. 1996; 103: 1798−803
        • Rahman I
        • Maino A
        • Devadason D
        • Leatherbarrow B
        Open globe injuries: factors predictive of poor outcome.
        Eye (Lond). 2006; 20: 1336−41
        • Brinton GS
        • Aaberg TM
        • Reeser FH
        • Topping TM
        • Abrams GW
        Surgical results in ocular trauma involving the posterior segment.
        Am J Ophthalmol. 1982; 93: 271−8
        • Schmidt GW
        • Broman AT
        • Hindman HB
        • Grant MP
        Vision survival after open globe injury predicted by classification and regression tree analysis.
        Ophthalmology. 2008; 115: 202-209
        • American Academy of Ophthalmology web site
        Five Tips to Avoid Toy-Related Eye Injuries.
        (Available at:) (Accessed May 2, 2018)
        • Kuhn F
        • Maisiak R
        • Mann L
        • Mester V
        • Morris R
        • Witherspoon CD
        The Ocular Trauma Score (OTS).
        Ophthalmol Clin North Am. 2002; 15: 163−5
        • Zhang Y
        • Zhang MN
        • Jiang CH
        • Yao Y
        • Zhang K
        Endophthalmitis following open globe injury.
        Br J Ophthalmol. 2010; 94: 111−4
        • Agrawal R
        • Wei HS
        • Teoh S
        Prognostic factors for open globe injuries and correlation of ocular trauma score at a tertiary referral eye care centre in Singapore.
        Indian J Ophthalmol. 2013; 61: 502−6
        • Wai Yu
        • Man C
        • Steel D
        Visual outcome after open globe injury: a comparison of two prognostic models—the Ocular Trauma Score and the Classification and Regression Tree.
        Eye (Lond). 2010; 24: 84−9
        • Agrawal R
        • Rao G
        • Naigaonkar R
        • Ou X
        • Desai S
        Prognostic factors for vision outcome after surgical repair of open globe injuries.
        Indian J Ophthalmol. 2011; 59: 465−70
        • Hatton MP
        • Thakker MM
        • Ray S
        Orbital and adnexal trauma associated with open-globe injuries.
        Ophthalmic Plast Reconstr Surg. 2002; 18: 458−61
        • Williams DF
        • Mieler WF
        • Abrams GW
        • Lewis H
        Results and prognostic factors in penetrating ocular injuries with retained intraocular foreign bodies.
        Ophthalmology. 1988; 95: 911−6
        • Ahmed Y
        • Schimel AM
        • Pathengay A
        • Colyer MH
        • Flynn Jr, HW
        Endophthalmitis following open-globe injuries.
        Eye (Lond). 2012; 26: 212−7
        • Andreoli CM
        • Andreoli MT
        • Kloek CE
        • Ahuero AE
        • Vavvas D
        • Durand ML
        Low rate of endophthalmitis in a large series of open globe injuries.
        Am J Ophthalmol. 2009; 147: 601−8
        • Wang NK
        • Lai CC
        • Chen TL
        • et al.
        Traumatic pediatric retinal detachment following open globe injury.
        Ophthalmologica. 2007; 221: 255−63
        • Scott R
        The ocular trauma score.
        Community eye health. 2015; 28: 44−5
        • Shah MA
        • Shah SM
        • Applewar A
        • Patel C
        • Shah S
        • Patel U
        Ocular Trauma Score: a useful predictor of visual outcome at six weeks in patients with traumatic cataract.
        Ophthalmology. 2012; 119: 1336−41
        • Unver YB
        • Kapran Z
        • Acar N
        • Altan T
        Ocular trauma score in open-globe injuries.
        J Trauma Acute Care Surg. 2009; 66: 1030−2
        • Knippers J
        • Slabaugh MA
        • Brown J
        • Lee J
        Comparison of Ocular Trauma Score and Classification and Regression Tree analysis model in Tertiary Care Center.
        Invest Ophthalmol Vis Sci. 2009; 50: 5324