Advertisement

Application of optical coherence tomography angiography in diabetic retinopathy: a comprehensive review

Published:April 08, 2019DOI:https://doi.org/10.1016/j.jcjo.2019.02.010

      Abstract

      Optical coherence tomography angiography (OCTA) is a noninvasive method that enables visualization of blood flow within retinal vessels down to the size of capillaries by detecting motion contrast from moving blood cells. OCTA provides a fast and safe procedure to assess retinal microvasculature with higher contrast and resolution than conventional fluorescence angiography. The different capillary plexuses are displayed separately and their perfusion density can be quantified. Imaging capabilities such as these have led to an emerging field of clinical application for OCTA in vascular diseases such as diabetic retinopathy (DR). Evaluation of parameters such as parafoveal capillary perfusion density could be a biomarker for disease diagnosis and progression. Typical microvascular changes in DR such as capillary nonperfusion, microaneurysms, intraretinal microvascular abnormalities, and neovascularization can be reliably detected in optical coherence tomography angiograms, characterized in detail and attributed to the different capillary plexuses. Monitoring of these lesions in vivo gives potential novel insight into the pathophysiology in DR. The aim of this article is to summarize the potential applications/utility of OCTA in DR reported in the literature.

      Résumé

      L'angiographie-tomographie en cohérence optique (OCT-A, pour optical coherence tomography angiography) est une technique non invasive qui permet de visualiser la circulation sanguine dans les vaisseaux rétiniens, même ceux de la taille des capillaires, grâce au principe du contraste de mouvement des cellules sanguines. L'OCT-A permet une évaluation sûre et rapide de la microvasculature rétinienne tout en offrant un meilleur contraste et une résolution supérieure à ce que permet l'angiographie fluorescéinique classique. Elle permet de visualiser séparément les différents plexus capillaires et d'en mesurer la densité de perfusion. Ce type de technique d'imagerie a donné naissance à un nouveau domaine d'application clinique de l'OCT-A dans les atteintes vasculaires comme la rétinopathie diabétique (RD). L’évaluation de paramètres tels que la densité de perfusion dans les capillaires parafovéaux pourrait devenir un biomarqueur du diagnostic et de la progression de la maladie. Les images obtenues à l'OCT-A font ressortir efficacement les changements microvasculaires typiques de la RD, notamment la non-perfusion capillaire, les microanévrismes, les anomalies microvasculaires intrarétiniennes et la néovascularisation; elles permettent d'en définir les caractéristiques détaillées et de les attribuer aux différents plexus capillaires. La surveillance in vivo de ces lésions ouvre la voie à une amélioration des connaissances dans la physiopathologie de la RD. Le présent article se veut un résumé de la littérature médicale sur les applications potentielles et l'utilité éventuelle de l'OCT-A dans la RD.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yeung L.
        • Lima V.C.
        • Garcia P.
        • Landa G.
        • Rosen R.B.
        Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema.
        Ophthalmology. 2009; 116: 1158-1167
        • Miwa Y.
        • Murakami T.
        • Suzuma K.
        • et al.
        Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography.
        Sci Rep. 2016; 6: 29064
        • Potsaid B.
        • Baumann B.
        • Huang D.
        • et al.
        Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second.
        Opt Express. 2010; 18: 20029-20048
        • De Vitis L.A.
        • Benatti L.
        • Tomasso L.
        • et al.
        Comparison of the performance of two different spectral-domain optical coherence tomography angiography devices in clinical practice.
        Ophthalmic Res. 2016; 56: 155-162
        • Ploner S.B.
        • Moult E.M.
        • Choi W.
        • et al.
        Toward quantitative optical coherence tomography angiography.
        Retina. 2016; 36: S118-S126
        • Zhang A.
        • Zhang Q.
        • Chen C.-L.
        • Wang R.K.
        Methods and algorithms for optical coherence tomography-based angiography: a review and comparison.
        J Biomed Opt. 2015; 20100901
        • Jia Y.
        • Tan O.
        • Tokayer J.
        • et al.
        Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.
        Opt Express. 2012; 20: 4710
        • Choi W.
        • Waheed N.K.
        • Moult E.M.
        • et al.
        Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy.
        Retina. 2017; 37: 11-21
        • Lee D.H.
        • Yi H.C.
        • Bae S.H.
        • Cho J.H.
        • Choi S.W.
        • Kim H.
        Risk factors for retinal microvascular impairment in type 2 diabetic patients without diabetic retinopathy.
        PLoS One. 2018; 13: 1-13
        • Li Z.
        • Alzogool M.
        • Xiao J.
        • Zhang S.
        • Zeng P.
        • Lan Y.
        Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy.
        Acta Diabetol. 2018; 55: 1075-1082
        • Kulikov A.N.
        • Maltsev D.S.
        • Burnasheva M.A.
        Improved analysis of foveal avascular zone area with optical coherence tomography angiography.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 2293-2299
        • Takase N.
        • Nozaki M.
        • Kato A.
        • Ozeki H.
        • Yoshida M.
        • Ogura Y.
        Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography.
        Retina. 2015; 35: 2377-2383
        • Gill A.
        • Cole E.D.
        • Novais E.A.
        • et al.
        Visualization of changes in the foveal avascular zone in both observed and treated diabetic macular edema using optical coherence tomography angiography.
        Int J Retin Vitr. 2017; 3: 19
        • Bresnick G.H.
        • Condit R.
        • Syrjala S.
        • Palta M.
        • Groo A.
        • Korth K.
        Abnormalities of the foveal avascular zone in diabetic retinopathy.
        Arch Ophthalmol. 1984; 102: 1286-1293
        • Shahlaee A.
        • Pefkianaki M.
        • Hsu J.
        • Ho A.C.
        Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography.
        Am J Ophthalmol. 2016; 161: 50-55
        • Di G.
        • Weihong Y.
        • Xiao Z.
        • et al.
        A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography.
        Graefes Arch Clin Exp Ophthalmol. 2016; 254: 873-879
        • Mansour A.M.
        • Schachat A.
        • Bodiford G.
        • Haymond R.
        Foveal avascular zone in diabetes mellitus.
        Retina. 1993; 13: 125-128
        • Murakami T.
        • Nishijima K.
        • Sakamoto A.
        • Ota M.
        • Horii T.
        • Yoshimura N.
        Foveal cystoid spaces are associated with enlarged foveal avascular zone and microaneurysms in diabetic macular edema.
        Ophthalmology. 2011; 118: 359-367
        • Conrath J.
        • Giorgi R.
        • Raccah D.
        • Ridings B.
        Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment.
        Eye. 2005; 19: 322-326
        • Tang F.Y.
        • Ng D.S.
        • Lam A.
        • et al.
        Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes.
        Sci Rep. 2017; 7: 1-10
        • Yu P.K.
        • Balaratnasingam C.
        • Cringle S.J.
        • McAllister I.L.
        • Provis J.
        • Yu D.-Y.
        Microstructure and network organization of the microvasculature in the human macula.
        Invest Opthalmol Vis Sci. 2010; 51: 6735-6743
        • Sim D.A.
        • Keane P.A.
        • Zarranz-Ventura J.
        • et al.
        The effects of macular ischemia on visual acuity in diabetic retinopathy.
        Invest Opthalmol Vis Sci. 2013; 54: 2353-2360
        • Shiihara H.
        • Terasaki H.
        • Sonoda S.
        • et al.
        Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography.
        Sci Rep. 2018; 8: 1-9
        • Kim K.
        • Kim E.S.
        • Yu S.-Y.
        Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes.
        Br J Ophthalmol. 2018; 102: 1226-1231
        • Cennamo G.
        • Romano M.R.
        • Nicoletti G.
        • Velotti N.
        • de Crecchio G.
        Optical coherence tomography angiography versus fluorescein angiography in the diagnosis of ischaemic diabetic maculopathy.
        Acta Ophthalmol. 2017; 95: e36-e42
        • Goudot M.M.
        • Sikorav A.
        • Semoun O.
        • et al.
        Parafoveal OCT angiography features in diabetic patients without clinical diabetic retinopathy: a qualitative and quantitative analysis.
        J Ophthalmol. 2017; 20178676091
        • Al-Sheikh M.
        • Akil H.
        • Pfau M.
        • Sadda S.R.
        Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy.
        Invest Ophthalmol Vis Sci. 2016; 57: 3907-3913
        • Ghasemi Falavarjani K.
        • Iafe N.A.
        • Hubschman J.P.
        • Tsui I.
        • Sadda S.R.
        • Sarraf D.
        Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion.
        Invest Ophthalmol Vis Sci. 2017; 58: 30-34
        • Lupidi M.
        • Coscas G.
        • Coscas F.
        • et al.
        Retinal microvasculature in nonproliferative diabetic retinopathy: automated quantitative optical coherence tomography angiography assessment.
        Ophthalmic Res. 2017; 58: 131-141
        • Campbell J.P.
        • Zhang M.
        • Hwang T.S.
        • et al.
        Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography.
        Sci Rep. 2017; 7: 42201
        • Mo S.
        • Krawitz B.
        • Efstathiadis E.
        • et al.
        Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography.
        Invest Ophthalmol Vis Sci. 2016; 57: 130-140
        • Arend O.
        • Wolf S.
        • Jung F.
        • et al.
        Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network.
        Br J Ophthalmol. 1991; 75: 514-518
        • Schwartz D.M.
        • Fingler J.
        • Kim D.Y.
        • et al.
        Phase-variance optical coherence tomography: a technique for noninvasive angiography.
        Ophthalmology. 2014; 121: 180-187
        • Ishibazawa A.
        • Nagaoka T.
        • Takahashi A.
        • et al.
        Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study.
        Am J Ophthalmol. 2015; 160: 35-44
        • Couturier A.
        • Mané V.
        • Bonnin S.
        • et al.
        Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography.
        Retina. 2015; 35: 2384-2391
        • Hwang T.S.
        • Jia Y.
        • Gao S.S.
        • et al.
        Optical coherence tomography angiography features of diabetic retinopathy.
        Retina. 2015; 35: 2371-2376
        • Matsunaga D.R.
        • Yi J.J.
        • De Koo L.O.
        • Ameri H.
        • Puliafito C.A.
        • Kashani A.H.
        Optical coherence tomography angiography of diabetic retinopathy in human subjects.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 796-805
      1. Schreur V, Domanian A, Liefers B, et al. Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography. Br J Ophthalmol. 2018:1–6.

        • Salz D.A.
        • de Carlo T.E.
        • Adhi M.
        • et al.
        Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes.
        JAMA Ophthalmol. 2016; 134: 644-650
        • De Venecia G.
        • Davis M.
        • Engerman R.
        Clinicopathologic correlations in diabetic retinopathy.
        Arch Ophthalmol. 1976; 94: 1766-1773
        • Parravano M.
        • De Geronimo D.
        • Scarinci F.
        • et al.
        Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection.
        Am J Ophthalmol. 2017; 7: 90-96
        • Retinopathy D.
        Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Early Treatment Diabetic Retinopathy Study Research Group.
        Ophthalmology. 1991; 98: 834-840
        • Ip M.S.
        • Domalpally A.
        • Sun J.K.
        • Ehrlich J.S.
        Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy.
        Ophthalmology. 2015; 122: 367-374
        • Ip M.S.
        • Domalpally A.
        • Hopkins J.J.
        • Wong P.
        • Ehrlich J.S.
        Long-term effects of ranibizumab on diabetic retinopathy severity and progression.
        Arch Ophthalmol. 2012; 130: 1145
        • Bradley P.D.
        • Sim D.A.
        • Keane P.A.
        • et al.
        The evaluation of diabetic macular ischemia using optical coherence tomography angiography.
        Invest Opthalmol Vis Sci. 2016; 57: 626-631
        • Sim D.A.
        • Keane P.A.
        • Zarranz-Ventura J.
        • et al.
        Predictive factors for the progression of diabetic macular ischemia.
        Am J Ophthalmol. 2013; 156: 684-692
        • Ghasemi Falavarjani K.
        • Al-Sheikh M.
        • Darvizeh F.
        • Sadun A.A.
        • Sadda S.R.
        Retinal vessel calibre measurements by optical coherence tomography angiography.
        Br J Ophthalmol. 2017; 101: 989-992
        • Spaide R.F.
        • Fujimoto J.G.
        • Waheed N.K.
        Image artifacts in optical coherence tomography angiography.
        Retina. 2015; 35: 2163-2180
        • Salas M.
        • Augustin M.
        • Ginner L.
        • et al.
        Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics.
        Biomed Opt Express. 2017; 8: 11438-11452
        • Zahid S.
        • Dolz-Marco R.
        • Freund K.B.
        • et al.
        Fractal dimensional analysis of optical coherence tomography angiography in eyes with diabetic retinopathy.
        Invest Ophthalmol Vis Sci. 2016; 57: 4940-4947
        • Chen Q.
        • Ma Q.
        • Wu C.
        • et al.
        Macular vascular fractal dimension in the deep capillary layer as an early indicator of microvascular loss for retinopathy in type 2 diabetic patients.
        Invest Ophthalmol Vis Sci. 2017; 58: 3785-3794
        • Bhardwaj S.
        • Tsui E.
        • Zahid S.
        • et al.
        Value of fractal analysis of optical coherence tomography angiography in various stages of diabetic retinopathy.
        Retina. 2018; 38: 1816-1823
        • Landini G.
        • Misson G.P.
        • Murray P.I.
        Fractal analysis of the normal human retinal fluorescein angiogram.
        Curr Eye Res. 1993; 12: 23-27
        • Agemy S.A.
        • Scripsema N.K.
        • Shah C.M.
        • et al.
        Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients.
        Retina. 2015; 35: 2353-2363
        • Krawitz B.D.
        • Phillips E.
        • Bavier R.D.
        • et al.
        Parafoveal nonperfusion analysis in diabetic retinopathy using optical coherence tomography angiography.
        Transl Vis Sci Technol. 2018; 7: 4
        • Nesper P.L.
        • Roberts P.K.
        • Onishi A.C.
        • et al.
        Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2017; 58: 307-315
        • Lee J.
        • Rosen R.
        Optical coherence tomography angiography in diabetes.
        Curr Diab Rep. 2016; 16: 123
        • Czakó C.
        • Sándor G.
        • Ecsedy M.
        • et al.
        Decreased retinal capillary density is associated with a higher risk of diabetic retinopathy in patients with diabetes.
        Retina. 2018; ([Epub ahead of print])
        • Meshi A.
        • Chen K.C.
        • You Q.S.
        • et al.
        Anatomical And Functional Testing In Diabetic Patients Without Retinopathy.
        Retina. 2018; ([Epub ahead of print])
        • Scarinci F.
        • Nesper P.L.
        • Fawzi A.A.
        Deep retinal capillary non-perfusion is associated with photoreceptor disruption in diabetic macular ischemia.
        Am J Ophthalmol. 2016; 168: 129-138
        • Werkmeister R.M.
        • Schmidl D.
        • Aschinger G.
        • et al.
        Retinal oxygen extraction in humans.
        Sci Rep. 2015; 5: 1-9
        • Yanoga F.
        • Garcia P.
        • Rosen R.
        Optic Nerve Head Perfusion Changes in Diabetic Retinopathy Assessed by OCTA Perfusion Density Mapping.
        Association for Research in Vision and Ophthalmology, San Francisco, CA2016
        • Cao D.
        • Yang D.
        • Yu H.
        • et al.
        Optic nerve head perfusion changes preceding peripapillary retinal nerve fiber layer thinning in preclinical diabetic retinopathy.
        Clin Exp Ophthalmol. 2018;
        • Fryczkowski A.W.
        • Hodes B.L.
        • Walker J.
        Diabetic choroidal and iris vasculature scanning electron microscopy findings.
        Int Ophthalmol. 1989; 13: 269-279
        • Cao J.
        • McLeod S.
        • Merges C.A.
        • Lutty G.A.
        Choriocapillaris degeneration and related pathologic changes in human diabetic eyes.
        Arch Ophthalmol. 1998; 116: 589-597
        • Hidayat A.A.
        • Fine B.S.
        Diabetic choroidopathy. Light and electron microscopic observations of seven cases.
        Ophthalmology. 1985; 92: 512-522
        • Shiragami C.
        • Shiraga F.
        • Matsuo T.
        • Tsuchida Y.
        • Ohtsuki H.
        Risk factors for diabetic choroidopathy in patients with diabetic retinopathy.
        Graefes Arch Clin Exp Ophthalmol. 2002; 240: 436-442
        • Spaide R.F.
        Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression.
        Am J Ophthalmol. 2016; 170: 58-67
        • Dodo Y.
        • Suzuma K.
        • Ishihara K.
        • et al.
        Clinical relevance of reduced decorrelation signals in the diabetic inner choroid on optical coherence tomography angiography.
        Sci Rep. 2017; 7: 1-11
        • Early Treatment of Diabetic Retinopathy Research
        Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House Classification: ETDRS Report Number 10.
        Ophthalmology. 1991; 98: 786-804
        • de Carlo T.E.
        • Bonini Filho M.A.
        • Baumal C.R.
        • et al.
        Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography.
        Ophthalmic Surg Lasers Imaging Retina. 2016; 47: 115-119
        • Lee C.S.
        • Lee A.Y.
        • Sim D.A.
        • et al.
        Reevaluating the definition of intraretinal microvascular abnormalities and neovascularization elsewhere in diabetic retinopathy using optical coherence tomography and fluorescein angiography.
        Am J Ophthalmol. 2015; 159: 101-110
        • Ashton N.
        Arteriolar involvement in diabetic retinopathy.
        Br J Ophthalmol. 1953; 37: 282-292
        • Pan J.
        • Chen D.
        • Yang X.
        • et al.
        Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography.
        Am J Ophthalmol. 2018; 192: 146-156
        • Schaal K.B.
        • Munk M.R.
        • Wyssmueller I.
        • Berger L.E.
        • Zinkernagel M.S.
        • Wolf S.
        Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging.
        Retina. 2019; 39: 79-87
        • Frank R.N.
        Diabetic retinopathy.
        N Engl J Med. 2004; 350: 48-58
        • Muqit M.M.K.
        • Stanga P.E.
        Fourier-domain optical coherence tomography evaluation of retinal and optic nerve head neovascularisation in proliferative diabetic retinopathy.
        Br J Ophthalmol. 2014; 98: 65-72
        • Cho H.
        • Alwassia A.A.
        • Regiatieri C V.
        • et al.
        Retinal neovascularization secondary to proliferative diabetic retinopathy characterized by spectral domain optical coherence tomography.
        Retina. 2013; 33: 542-547
        • Akiyama H.
        • Li D.
        • Shimoda Y.
        • Matsumoto H.
        • Kishi S.
        Observation of neovascularization of the disc associated with proliferative diabetic retinopathy using OCT angiography.
        Jpn J Ophthalmol. 2018; 62: 1-6
        • Muraoka K.
        • Yokochi K.
        [Origin of newly formed vessels from the optic disc (author's transl)].
        Nihon Ganka Gakkai Zasshi. 1976; 80: 1152-1159
        • Jansson R.W.
        • Frøystein T.
        • Krohn J.
        Topographical distribution of retinal and optic disc neovascularization in early stages of proliferative diabetic retinopathy.
        Invest Opthalmol Vis Sci. 2012; 53: 8246
        • Asdourian G.K.
        • Goldberg M.F.
        Optic disc neovascularization of uveal (choroidal or posterior ciliary) origin.
        Arch Ophthalmol. 1977; 95: 998-1003
        • Jacobs N.A.
        • Steele C.A.
        • Mills K.B.
        Origin of disc new vessels assessed by videofluorography.
        Br J Ophthalmol. 1988; 72: 394-398
        • Savastano M.C.
        • Federici M.
        • Falsini B.
        • Caporossi A.
        • Minnella A.M.
        Detecting papillary neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography.
        Acta Ophthalmol. 2016; 96: 321-323
        • Zhang X.
        • Wu C.
        • Zhou L.
        • Dai R.
        Observation of optic disc neovascularization using OCT angiography in proliferative diabetic retinopathy after intravitreal conbercept injections.
        Sci Rep. 2018; 8: 1-8
        • Ishibazawa A.
        • Nagaoka T.
        • Yokota H.
        • et al.
        Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography.
        Invest Opthalmol Vis Sci. 2016; 57: 6247
        • Zhang Q.
        • Lee C.S.
        • Chao J.
        • et al.
        Wide-field optical coherence tomography based microangiography for retinal imaging.
        Sci Rep. 2016; 6: 22017
        • Sawada O.
        • Ichiyama Y.
        • Obata S.
        • et al.
        Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 1275-1280
        • de Carlo T.E.
        • Chin A.T.
        • Joseph T.
        • et al.
        Distinguishing diabetic macular edema from capillary nonperfusion using optical coherence tomography angiography.
        Ophthalmic Surg Lasers Imaging Retina. 2016; 47: 108-114
        • Dodo Y.
        • Murakami T.
        • Suzuma K.
        • et al.
        Diabetic neuroglial changes in the superficial and deep nonperfused areas on optical coherence tomography angiography.
        Invest Opthalmol Vis Sci. 2017; 58: 5870
        • Toto L.
        • D'Aloisio R.
        • Di Nicola M.
        • et al.
        Qualitative and quantitative assessment of vascular changes in diabetic macular edema after dexamethasone implant using optical coherence tomography angiography.
        Int J Mol Sci. 2017; 18: 1181
        • Hasegawa N.
        • Nozaki M.
        • Takase N.
        • Yoshida M.
        • Ogura Y.
        New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema.
        Invest Opthalmol Vis Sci. 2016; 57 (OCT348)
        • Mao L.
        • Weng S.
        • Gong Y.
        • Yu S.
        Optical coherence tomography angiography of macular telangiectasia type 1: comparison with mild diabetic macular edema.
        Lasers Surg Med. 2017; 49: 225-232
        • Silva P.S.
        • Cavallerano J.D.
        • Haddad N.M.N.
        • et al.
        Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years.
        Ophthalmology. 2015; 122: 949-956
        • Lim H.B.
        • Kim Y.W.
        • Kim J.M.
        • Jo Y.J.
        • Kim J.Y.
        The importance of signal strength in quantitative assessment of retinal vessel density using optical coherence tomography angiography.
        Sci Rep. 2018; 8: 12897
        • Chen C.-L.
        • Zhang A.
        • Bojikian K.D.
        • et al.
        Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography–based microangiography.
        Invest Opthalmol Vis Sci. 2016; 57 (OCT475)
        • You Q.
        • Freeman W.R.
        • Weinreb R.N.
        • et al.
        Reproducibility of vessel density measurement with optical coherence tomography angiography in eyes with and without retinopathy.
        Retina. 2017; 37: 1475-1482
        • Murakami T.
        • Suzuma K.
        • Dodo Y.
        • et al.
        Decorrelation signal of diabetic hyperreflective foci on optical coherence tomography angiography.
        Sci Rep. 2018; 8: 1-10
        • Savastano M.C.
        • Lumbroso B.
        • Rispoli M.
        In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography.
        Retina. 2015; 35: 2196-2203