Advertisement

Relationship between optic disc hemorrhage and corneal hysteresis

Published:December 23, 2019DOI:https://doi.org/10.1016/j.jcjo.2019.10.007

      Abstract

      Objective

      To determine the relationship between optic disc hemorrhage (DH) and corneal hysteresis (CH).

      Methods

      Consecutive patients with prior or current photographic evidence of unilateral DH who had undergone CH measurement with the Ocular Response Analyzer (ORA; Reichert, Buffalo, NY) were enrolled. Eyes with a history of corneal disease, refractive surgery, or bilateral DH were excluded. Central corneal thickness (CCT), visual field data, 5 consecutive previous intraocular pressures (IOPs), and maximum documented peak IOP were obtained by chart review. Vertical cup-to-disc ratio (VCDR), the presence of neuroretinal rim notching, number of clock hours of beta zone parapapillary atrophy (ßPPA), and eye with greater ßPPA width were determined from photographs by 2 masked expert examiners.

      Results

      We identified and analyzed 49 patients with photographically documented unilateral DH. Compared to fellow non-DH eyes, eyes with DH had lower CH (8.7 ± 1.9 vs 9.2 ± 1.7; p = 0.002), higher IOP (15.6 ± 3.6 vs 14.3 ± 4.1; p = 0.017), and greater VCDR (0.79 ± 0.13 vs 0.68 ± 0.23; p < 0.001), but were similar with respect to CCT, ßPPA extent, rim notching, peak IOP, and visual field damage (all p > 0.05). Using multivariate conditional logistic regression analysis, only CH (p = 0.012) and VCDR (p = 0.004) predicted the laterality of the DH.

      Conclusions

      Lower CH and greater VCDR are independently associated with DH. This suggests that CH may be a structural biomarker for an abnormality of the optic nerve complex that may be associated with progressive glaucoma. Eyes in which DH were detected had lower CH.

      Résumé

      Objectif

      Déterminer le lien entre l'hémorragie discale (HD) et l'hystérèse cornéenne (HC).

      Méthodes

      Ont été recrutés des patients consécutifs qui présentaient des signes photographiques (actuels ou antérieurs) d'HD unilatérale et chez lesquels on a mesuré l'HC grâce à l’Ocular Response Analyzer® (ORA; Reichert, Buffalo, NY). Les yeux qui présentaient des antécédents d'atteinte cornéenne, de chirurgie réfractive ou d'HD bilatérale ont été exclus. On a consulté les dossiers médicaux pour obtenir l’épaisseur cornéenne centrale (ECC), les données liées aux champs visuels, les 5 pressions intraoculaires (PIO) consécutives précédentes et le pic maximal de PIO enregistré. À partir de photographies à l'insu, 2 examinateurs experts ont déterminé le rapport cupule/disque (C/D) vertical, la présence d'une encoche de l'anneau neurorétinien, le nombre d'heures d'horloge de l'atrophie péripapillaire de la zone β (APPβ) de même que les yeux qui présentaient une APPβ plus importante.

      Résultats

      Nous avons ainsi identifié et analysé 49 patients qui présentaient des signes photographiques d'HD unilatérale. Par comparaison aux yeux sans HD, les yeux qui présentaient une HD avaient une HC moindre (8,7 ± 1,9 vs 9,2 ± 1,7; p = 0,002), une PIO plus élevée (15,6 ± 3,6 vs 14,3 ± 4,1; p = 0,017) et un plus grand rapport C/D vertical (0,79 ± 0,13 vs 0,68 ± 0,23; p < 0,001); par contre, ces derniers étaient similaires quant à l'ECC, à l’étendue de l'APPβ, à la présence d'une encoche de l'anneau neurorétinien, au pic de PIO et aux altérations du champ visuel (p > 0,05 dans tous les cas). Selon la régression logistique conditionnelle pour analyse multivariée, seule l'HC (p = 0,012) et le rapport C/D vertical (p = 0,004) ont permis de prédire la latéralité de l'HD.

      Conclusions

      Il existe un lien indépendant entre l'HD, d'une part et une HC moindre et un plus grand rapport C/D vertical, d'autre part, ce qui donne à penser que l'HC représente peut-être un biomarqueur structurel d'une anomalie du nerf optique qui pourrait être associée à un glaucome progressif. Les yeux qui présentaient une HD avaient une HC moins prononcée.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leske MC
        • Heijl A
        • Hyman L
        • Bengtsson B
        • Dong L
        • Yang Z
        • EMGT Group
        Predictors of long-term progression in the early manifest glaucoma trial.
        Ophthalmology. 2007; 114: 1965-1972
        • Nouri-Mahdavi K
        • Hoffman D
        • Coleman AL
        • Advanced Glaucoma Intervention Study
        Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study.
        Ophthalmology. 2004; 111: 1627-1635
        • Collaborative Normal-Tension Glaucoma Study Group
        Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures.
        Am J Ophthalmol. 1998; 126: 487-497
        • Siegner SW
        • Netland PA.
        Optic disc hemorrhages and progression of glaucoma.
        Ophthalmology. 1996; 103: 1014-1024
        • Gordon MO
        • Beiser JA
        • Brandt JD
        • et al.
        The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma.
        Arch Ophthalmol. 2002; 120 (discussion 829–30): 714-720
        • Teng CC
        • De Moraes CG
        • Prata TS
        • Tello C
        • Ritch R
        • Liebmann JM
        Beta-zone parapapillary atrophy and the velocity of glaucoma progression.
        Ophthalmology. 2010; 117: 909-915
        • Congdon NG
        • Broman AT
        • Bandeen-Roche K
        • Grover D
        • Quigley HA
        Central corneal thickness and corneal hysteresis associated with glaucoma damage.
        Am J Ophthalmol. 2006; 141: 868-875
        • Luce DA.
        Determining in vivo biomechanical properties of the cornea with an ocular response analyzer.
        J Cataract Refract Surg. 2005; 31: 156-162
        • Bochmann F
        • Ang GS
        • Azuara-Blanco A
        Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON).
        Graefes Arch Clin Exp Ophthalmol. 2008; 246: 735-738
        • Sullivan-Mee M
        • Billingsley SC
        • Patel AD
        • Halverson KD
        • Alldredge BR
        • Qualls C
        Ocular Response Analyzer in subjects with and without glaucoma.
        Optom Vis Sci. 2008; 85: 463-470
        • Ang GS
        • Bochmann F
        • Townend J
        • Azuara-Blanco A
        Corneal biomechanical properties in primary open angle glaucoma and normal tension glaucoma.
        J Glaucoma. 2008; 17: 259-262
        • Schroeder B
        • Hager A
        • Kutschan A
        • Wiegand W
        [Measurement of viscoelastic corneal parameters (corneal hysteresis) in patients with primary open angle glaucoma].
        Ophthalmologe. 2008; 105: 916-920
        • Touboul D
        • Roberts C
        • Kérautret J
        • et al.
        Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry.
        J Cataract Refract Surg. 2008; 34: 616-622
        • Jonas JB
        • Stroux A
        • Oberacher-Velten IM
        • Kitnarong N
        • Jünemann A
        Central corneal thickness and development of glaucomatous optic disk hemorrhages.
        Am J Ophthalmol. 2005; 140: 1139-1141
        • Drance SM
        • Fairclough M
        • Butler DM
        • Kottler MS
        The importance of disc hemorrhage in the prognosis of chronic open angle glaucoma.
        Arch Ophthalmol. 1977; 95: 226-228
        • Ishida K
        • Yamamoto T
        • Sugiyama K
        • Kitazawa Y
        Disk hemorrhage is a significantly negative prognostic factor in normal-tension glaucoma.
        Am J Ophthalmol. 2000; 129: 707-714
        • Jonas JB
        • Xu L.
        Optic disk hemorrhages in glaucoma.
        Am J Ophthalmol. 1994; 118: 1-8
        • Airaksinen PJ
        • Mustonen E
        • Alanko HI
        Optic disc haemorrhages precede retinal nerve fibre layer defects in ocular hypertension.
        Acta Ophthalmol (Copenh). 1981; 59: 627-641
        • Jonas JB
        • Schiro D.
        Localised wedge shaped defects of the retinal nerve fibre layer in glaucoma.
        Br J Ophthalmol. 1994; 78: 285-290
        • De Moraes CG
        • Prata TS
        • Liebmann CA
        • Tello C
        • Ritch R
        • Liebmann JM
        Spatially consistent, localized visual field loss before and after disc hemorrhage.
        Invest Ophthalmol Vis Sci. 2009; 50: 4727-4733
        • Xu L
        • Zhang H
        • Wang YX
        • Jonas JB
        Central corneal thickness and optic disc hemorrhages: the Beijing Eye Study.
        Arch Ophthalmol. 2008; 126: 435-436
        • Radcliffe NM
        • Liebmann JM
        • Rozenbaum I
        • et al.
        Anatomic relationships between disc hemorrhage and parapapillary atrophy.
        Am J Ophthalmol. 2008; 146: 735-740
        • Kim YD
        • Han SB
        • Park KH
        • et al.
        Risk factors associated with optic disc haemorrhage in patients with normal tension glaucoma.
        Eye (Lond). 2010; 24: 567-572
        • Law SK
        • Choe R
        • Caprioli J
        Optic disk characteristics before the occurrence of disk hemorrhage in glaucoma patients.
        Am J Ophthalmol. 2001; 132: 411-413
        • Wells AP
        • Garway-Heath DF
        • Poostchi A
        • Wong T
        • Chan KC
        • Sachdev N
        Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients.
        Invest Ophthalmol Vis Sci. 2008; 49: 3262-3268
        • Kotecha A
        • Elsheikh A
        • Roberts CR
        • Zhu H
        • Garway-Heath DF
        Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer.
        Invest Ophthalmol Vis Sci. 2006; 47: 5337-5347
        • Lesk MR
        • Hafez AS
        • Descovich D
        Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension.
        Arch Ophthalmol. 2006; 124: 1568-1572
        • Tomais G
        • Georgopoulos G
        • Koutsandrea C
        • Moschos M
        Correlation of central corneal thickness and axial length to the optic disc and peripapillary atrophy among healthy individuals, glaucoma and ocular hypertension patients.
        Clin Ophthalmol. 2008; 2: 981-988
        • Jonas JB
        • Hayreh SS
        • Tao Y
        Central corneal thickness and thickness of the lamina cribrosa and peripapillary sclera in monkeys.
        Arch Ophthalmol. 2009; 127: 1395-1396
        • Jonas JB
        • Holbach L.
        Central corneal thickness and thickness of the lamina cribrosa in human eyes.
        Invest Ophthalmol Vis Sci. 2005; 46: 1275-1279
        • Oliveira C
        • Tello C
        • Liebmann J
        • Ritch R
        Central corneal thickness is not related to anterior scleral thickness or axial length.
        J Glaucoma. 2006; 15: 190-194
        • Shimmyo M
        • Orloff PN
        Corneal thickness and axial length.
        Am J Ophthalmol. 2005; 139: 553-554
        • Mohamed-Noor J
        • Bochmann F
        • Siddiqui MA
        • et al.
        Correlation between corneal and scleral thickness in glaucoma.
        J Glaucoma. 2009; 18: 32-36
        • Sun L
        • Shen M
        • Wang J
        • et al.
        Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma.
        Am J Ophthalmol. 2009; 147: 1061-1066
        • Shimmyo M.
        Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma.
        Am J Ophthalmol. 2009; 148 (author reply 623): 623
        • Jonas JB
        • Martus P
        • Budde WM
        • Hayler J
        Morphologic predictive factors for development of optic disc hemorrhages in glaucoma.
        Invest Ophthalmol Vis Sci. 2002; 43: 2956-2961
        • Xu L
        • Wang Y
        • Yang H
        • Jonas JB
        Differences in parapapillary atrophy between glaucomatous and normal eyes: the Beijing Eye Study.
        Am J Ophthalmol. 2007; 144: 541-546
        • Uchida H
        • Ugurlu S
        • Caprioli J
        Increasing peripapillary atrophy is associated with progressive glaucoma.
        Ophthalmology. 1998; 105: 1541-1545
        • Ahn JK
        • Kang JH
        • Park KH
        Correlation between a disc hemorrhage and peripapillary atrophy in glaucoma patients with a unilateral disc hemorrhage.
        J Glaucoma. 2004; 13: 9-14
        • Sugiyama K
        • Tomita G
        • Kawase K
        • et al.
        Disc hemorrhage and peripapillary atrophy in apparently healthy subjects.
        Acta Ophthalmol Scand. 1999; 77: 139-142
        • Kitazawa Y
        • Shirato S
        • Yamamoto T
        Optic disc hemorrhage in low-tension glaucoma.
        Ophthalmology. 1986; 93: 853-857
        • Wang XH
        • Stewart WC
        • Jackson GJ
        Differences in optic discs in low-tension glaucoma patients with relatively low or high pressures.
        Acta Ophthalmol Scand. 1996; 74: 364-367
        • Buus DR
        • Anderson DR.
        Peripapillary crescents and halos in normal-tension glaucoma and ocular hypertension.
        Ophthalmology. 1989; 96: 16-19
        • Park KH
        • Park SJ
        • Lee YJ
        • Kim JY
        • Caprioli J
        Ability of peripapillary atrophy parameters to differentiate normal-tension glaucoma from glaucomalike disk.
        J Glaucoma. 2001; 10: 95-101
        • Krupin T
        • Liebmann JM
        • Greenfield DS
        • Rosenberg LF
        • Ritch R
        • Yang JW
        • Low-Pressure Glaucoma Study Group
        The Low-pressure Glaucoma Treatment Study (LoGTS) study design and baseline characteristics of enrolled patients.
        Ophthalmology. 2005; 112: 376-385
        • Bengtsson B
        • Leske MC
        • Yang Z
        • Heijl A
        • EMGT Group
        Disc hemorrhages and treatment in the early manifest glaucoma trial.
        Ophthalmology. 2008; 115: 2044-2048
        • Crichton A
        • Drance SM
        • Douglas GR
        • et al.
        Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma.
        Ophthalmology. 1989; 96: 1312-1314
        • Poinoosawmy D
        • Fontana L
        • Wu JX
        • et al.
        Frequency of asymmetric visual field defects in normal-tension and high-tension glaucoma.
        Ophthalmology. 1998; 105: 988-991
        • Holst JC.
        A statistical study of glaucoma.
        Am J Ophthalmol. 1947; 30: 1267-1275