Advertisement

Applications of iodine-125 plaque radiotherapy for residual or recurrent retinoblastoma

  • Author Footnotes
    1 S.S. and A.B. contributed equally to this work.
    Sameh E. Soliman
    Footnotes
    1 S.S. and A.B. contributed equally to this work.
    Affiliations
    Department of Ophthalmology and Vision Sciences, Ocular Oncology Unit, Princess Margaret Hospital, Toronto, Canada

    Department of Ophthalmology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt

    Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Canada
    Search for articles by this author
  • Author Footnotes
    1 S.S. and A.B. contributed equally to this work.
    Aditya Bansal
    Footnotes
    1 S.S. and A.B. contributed equally to this work.
    Affiliations
    Department of Ophthalmology and Vision Sciences, Ocular Oncology Unit, Princess Margaret Hospital, Toronto, Canada
    Search for articles by this author
  • M. Laura De Nicola
    Affiliations
    Department of Ophthalmology and Vision Sciences, Ocular Oncology Unit, Princess Margaret Hospital, Toronto, Canada

    Ocular Oncology Service, Fundacion Banco de Ojos Fernando Oca Del Ville, Asunción, Paraguay
    Search for articles by this author
  • Vishaal Bhambhwani
    Affiliations
    Ophthalmology Services, Department of Surgery, Northern Ontario School of Medicine and Thunder Bay Regional Health Sciences Centre, Ontario, Canada
    Search for articles by this author
  • Normand Laperriere
    Affiliations
    Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Brenda L. Gallie
    Affiliations
    Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Canada

    Department of Ophthalmology & Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada

    Departments of Molecular Genetics and Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Hatem Krema
    Correspondence
    Correspondence to Hatem Krema, Princess Margaret Cancer Center, Ocular Oncology 18-605, 610 University Avenue, Toronto, Ontario M5G2M9, Canada.
    Affiliations
    Department of Ophthalmology and Vision Sciences, Ocular Oncology Unit, Princess Margaret Hospital, Toronto, Canada

    Department of Ophthalmology & Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Author Footnotes
    1 S.S. and A.B. contributed equally to this work.
Published:January 22, 2021DOI:https://doi.org/10.1016/j.jcjo.2020.12.016

      Abstract

      Objective

      To determine the role of iodine-125 plaque radiotherapy (IPR) as a secondary treatment for localized (solitary or multiple) residual (partially regressed) or recurrent (regrowth after ≥6 months stability) retinoblastoma in the era of systemic and/or regional chemotherapy.

      Design

      A single-institute retrospective, noncomparative, interventional case series managed between July 2014 and June 2019.

      Participants

      Thirteen consecutive eyes of 12 patients with 14 residual or recurrent retinoblastoma tumors treated with IPR. Patients who had to follow up <1 year post-IPR were excluded except for those who had enucleation.

      Methods

      Data collected included pre-IPR treatments, tumor characteristics at IPR, and post-IPR anatomical outcome (local tumor control and globe salvage) and functional outcome (radiation complications).

      Results

      Local tumor control was achievable in 12 of 14 tumors. Local recurrences were observed in 2 of 5 tumors that exhibited fish-flesh regression after IPR (p = 0.04). Globe salvage was possible in 11 eyes (12 tumors). Only 2 eyes were legally blind and the remaining 9 eyes had vision >20/125. Radiation-induced complications included radiation retinopathy (4/11), radiation papillopathy (1/11), diffuse vitreous hemorrhage (4/11). Eyes with fish-flesh-regressed tumours tended to show more complications, but were statistically insignificant (p = 0.09, Fisher exact test). There was no association of time to IPR (early <6 months vs late >6 months) with occurrence of tumor recurrence or complications (p > 0.05).

      Conclusion

      IPR offers satisfactory local tumor control and globe salvage in localized recurrent/residual retinoblastoma. Fish-flesh tumor regression after IPR should be closely monitored for further recurrences.

      Objectif

      Déterminer le rôle de la curiethérapie par disque d'iode 125 (IPR, pour iodine-125 plaque radiotherapy) à titre de traitement secondaire du rétinoblastome localisé (solitaire ou multiple), résiduel (partiellement régressif) ou récurrent (réévolutivité après ≥ 6 mois de stabilité) dans un contexte de chimiothérapie systémique et/ou régionale.

      Nature

      Étude rétrospective et non comparative d'intervention portant sur une série de cas réalisée dans un seul centre entre juillet 2014 et juin 2019.

      Participants

      Treize yeux consécutifs de 12 patients comptant un total de 14 rétinoblastomes résiduels ou récurrents ont fait l'objet d'une IPR. Les patients qui ont été suivis < 1 an après l'IPR ont été exclus, à l'exception de ceux qui ont subi une énucléation.

      Méthodes

      Les données recueillies portaient sur les traitements précédant l'IPR et sur les caractéristiques de la tumeur au moment de l'IPR, de même que sur les résultats anatomiques au décours de l'IPR (contrôle tumoral local et conservation du globe oculaire) et fonctionnels (complications secondaires à la curiethérapie).

      Résultats

      Le contrôle tumoral local a été obtenu dans 12 des 14 tumeurs. Des récurrences locales se sont produites dans 2 des 5 tumeurs qui ont présenté une régression prenant un aspect « chair de poisson » après l'IPR (p = 0,04). La conservation du globe oculaire a été possible dans 11 yeux (12 tumeurs). Seuls 2 yeux étaient aveugles au sens de la loi, la vision dans les 9 autres yeux s’établissant à > 20/125. Parmi les complications liées à la curiethérapie, mentionnons la rétinopathie radique (4/11), la papillopathie radique (1/11) et l'hémorragie vitréenne diffuse (4/11). Les yeux dont la tumeur présentait une régression à l'aspect « chair de poisson » ont eu tendance à manifester plus de complications, bien que la différence n'ait pas été significative sur le plan statistique (p = 0,09; test exact de Fisher). On n'a noté aucune association temporelle entre l'IPR (hâtive [< 6 mois] vs tardive [> 6 mois]) et la survenue d'une récurrence tumorale ou d'une complication (p > 0,05).

      Conclusion

      L'IPR permet un contrôle tumoral local satisfaisant tout en assurant la conservation du globe oculaire dans le rétinoblastome localisé récurrent/résiduel. Advenant une régression prenant un aspect « chair de poisson » après l'IPR, il faut demeurer à l'affût des récurrences.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Soliman SE
        • Racher H
        • Zhang C
        • MacDonald H
        • Gallie BL.
        Genetics and molecular diagnostics in retinoblastoma–an update.
        Asia Pac J Ophthalmol (Phila). 2017; 6: 197-207
        • Dimaras H
        • Corson TW
        • Cobrinik D
        • et al.
        Retinoblastoma.
        Nat Rev Dis Primers. 2015; 1: 15021
        • Mallipatna AC
        • Sutherland JE
        • Gallie BL
        • Chan H
        • Heon E.
        Management and outcome of unilateral retinoblastoma.
        J AAPOS. 2009; 13: 546-550
        • Kletke SN
        • Feng ZX
        • Hazrati LN
        • Gallie BL
        • Soliman SE.
        Clinical predictors at diagnosis of low-risk histopathology in unilateral advanced retinoblastoma.
        Ophthalmology. 2019; 126: 1306-1314
        • Soliman SE
        • Ulster A
        • MacDonald H
        • et al.
        Psychosocial determinants for treatment decisions in familial retinoblastoma.
        Ophthalmic Genet. 2017; 38: 392-394
        • Soliman SE
        • Dimaras H
        • Souka AA
        • Ashry MH
        • Gallie BL.
        Socioeconomic and psychological impact of treatment for unilateral intraocular retinoblastoma.
        J Francais D Ophtalmologie. 2015; 38: 550-558
        • Eng C
        • Li FP
        • Abramson DH
        • et al.
        Mortality from second tumors among long-term survivors of retinoblastoma.
        J Natl Cancer Inst. 1993; 85: 1121-1128
        • Munier FL
        • Beck-Popovic M
        • Chantada GL
        • et al.
        Conservative management of retinoblastoma: challenging orthodoxy without compromising the state of metastatic grace. “Alive, with good vision and no comorbidity”.
        Prog Retin Eye Res. 2019; 100764
        • Kim JY
        • Park Y.
        Treatment of retinoblastoma: the role of external beam radiotherapy.
        Yonsei Med J. 2015; 5: 1478-1491
        • Shields CL
        • Mashayekhi A
        • Sun H
        • et al.
        Iodine 125 plaque radiotherapy as salvage treatment for retinoblastoma recurrence after chemoreduction in 84 tumors.
        Ophthalmology. 2006; 113: 2087-2092
        • Echegaray JJ
        • Al-Zahrani YA
        • Singh A.
        Episcleral brachytherapy for retinoblastoma.
        Br J Ophthalmol. 2020; 104: 208-213
        • Francis JH
        • Barker CA
        • Wolden SL
        • et al.
        Salvage/adjuvant brachytherapy after ophthalmic artery chemosurgery for intraocular retinoblastoma.
        Int J Radiat Oncol Biol Phys. 2013; 87: 517-523
        • Murphree AL.
        Intraocular retinoblastoma: the case for a new group classification.
        Ophthalmol Clin North America. 2005; 18: 41-53
        • Krema H
        • Xu W
        • Payne D
        • Vasquez LM
        • Pavlin CJ
        • Simpson R.
        Factors predictive of radiation retinopathy post (125)Iodine brachytherapy for uveal melanoma.
        Can J Ophthalmol. 2011; 46: 158-163
        • Gallie BL
        • Soliman S
        Retinoblastoma.
        in: Lambert B Lyons C Taylor and Hoyt's PaediatricOphthalmology and Strabismus. 5th Edition ed. Elsevier, Ltd., Oxford, OX5 1GB, United Kingdom2017: 424-442
        • Yousef YA
        • Soliman SE
        • Astudillo PP
        • et al.
        Intra-arterial chemotherapy for retinoblastoma: a systematic review.
        JAMA Ophthalmol. 2016; 134: 584-591
        • Shields CL
        • Shields JA
        • Cater J
        • Othmane I
        • Singh AD
        • Micaily B.
        Plaque radiotherapy for retinoblastoma: long-term tumor control and treatment complications in 208 tumors.
        Ophthalmology. 2001; 108: 2116-2121
        • Abouzeid H
        • Moeckli R
        • Gaillard MC
        • et al.
        (106)Ruthenium brachytherapy for retinoblastoma.
        Int J Radiat Oncol Biol Phys. 2008; 71: 821-828
        • Lucas JT
        • McGee R
        • Billups CA
        • et al.
        Prior non-irradiative focal therapies do not compromise the efficacy of delayed episcleral plaque brachytherapy in retinoblastoma [e-pub ahead of print].
        Br J Ophthalmol. 2018; 28 (bjophthalmol-2018-311923)https://doi.org/10.1136/bjophthalmol-2018-311923
        • Merchant TE
        • Gould CJ
        • Wilson MW
        • Hilton NE
        • Rodriguez-Galindo C
        • Haik BG.
        Episcleral plaque brachytherapy for retinoblastoma.
        Pediatr Blood Cancer. 2004; 43: 134-139
        • Schueler AO
        • Fluhs D
        • Anastassiou G
        • et al.
        Beta-ray brachytherapy with 106Ru plaques for retinoblastoma.
        Int J Radiat Oncol Biol Phys. 2006; 65: 1212-1221
        • Murakami N
        • Suzuki S
        • Ito Y
        • et al.
        (1)(0)(6)Ruthenium plaque therapy (RPT) for retinoblastoma.
        Int J Radiat Oncol Biol Phys. 2012; 84: 59-65
        • Munier FL
        • Gaillard MC
        • Balmer A
        • et al.
        Intravitreal chemotherapy for vitreous disease in retinoblastoma revisited: from prohibition to conditional indications.
        Br J Ophthalmol. 2012; 96: 1078-1083
        • Munier FL
        • Soliman S
        • Moulin AP
        • Gaillard MC
        • Balmer A
        • Beck-Popovic M.
        Profiling safety of intravitreal injections for retinoblastoma using an anti-reflux procedure and sterilisation of the needle track.
        Br J Ophthalmol. 2012; 96: 1084-1087
        • Abramson DH
        • Marr BP
        • Brodie SE
        • Dunkel I
        • Palioura S
        • Gobin YP.
        Ophthalmic artery chemosurgery for less advanced intraocular retinoblastoma: five year review.
        PLoS One. 2012; 7: e34120
        • Suzuki S
        • Yamane T
        • Mohri M
        • Kaneko A.
        Selective ophthalmic arterial injection therapy for intraocular retinoblastoma: the long-term prognosis.
        Ophthalmology. 2011; 118: 2081-2087
        • Gallie B
        • Soliman S
        • Shaikh F
        • et al.
        DEPICT HEALTH supports clinical trial of sustained-release episcleral topotecan for retinoblastoma.
        Invest Ophtalmol Vis Sci. 2019; 60: 2322
      1. National Retinoblastoma Strategy Canadian Guidelines for Care / Stratégie thérapeutique du rétinoblastome guide clinique canadien.
        Can J Ophthalmol. 2009; 44: S1-88