Advertisement

Micropulse trans-scleral laser therapy outcomes for uncontrolled glaucoma: a prospective 18-month study

Published:February 09, 2021DOI:https://doi.org/10.1016/j.jcjo.2021.01.015

      Abstract

      Objective

      To evaluate the efficacy and safety of micropulse trans-scleral laser therapy (mTLT) in glaucomatous patients.

      Design

      Prospective, interventional study in a university hospital setting.

      Participants

      Fifty-two eyes of 52 adult patients with uncontrolled glaucoma despite maximal tolerated medical treatment, and/or poor candidates for filtering surgery.

      Methods

      Participants received a 360-degree mTLT diode laser treatment (2000mW, 31.33% duty cycle), with duration adjusted to iris pigmentation and glaucoma severity (160–320 seconds). They were followed for 18 months to assess intraocular pressure (IOP), number of medications, corrected distance visual acuity (CDVA), glaucoma progression based on Humphrey Sita 24-2 perimetry and Cirrus high-definition optical coherence tomography, and complications. The primary outcome measure was the absolute success at 18 months. Absolute success was defined as an IOP 6–21 mm Hg and at least 25% IOP reduction, with equal or less number of IOP medications. Qualified success allowed for an increased number of IOP medications. Failure was defined as an inability to meet the criteria for success or the need for incisional glaucoma surgery.

      Results

      Treatment absolute success was 61.5% at 12 months and 59.6% at 18 months. Mean IOP was reduced by 35.6% at 18 months (23.6 ± 6.5 mm Hg at baseline; 15.2 ± 4.1 mm Hg at 18 months, p < 0.001). mTLT did not significantly reduce the number of topical glaucoma medications (p = 0.075); however, 15 eyes (29%) had systemic oral glaucoma treatment at baseline and 10 eyes (20%) at 18 months. Eight patients (15%) experienced vision loss of ≥2 lines after the procedure. Three patients (6%) regained their preoperative CDVA by 1 month, and 3 patients (6%) by 3 months, while 2 patients (4%) sustained persistent visual loss. No ocular complications were noted in 84.6%. Incisional surgery was required in 25% of eyes owing to inadequately controlled glaucoma despite mTLT.

      Conclusions

      mTLT is a good therapeutic option for moderate IOP reduction, while being safe and predictable. This improved safety profile makes mTLT a treatment to be considered earlier in the management of glaucoma.

      Objectif

      Évaluer l'efficacité et l'innocuité du laser micropulsé trans-scléral dans le traitement du glaucome.

      Nature

      Étude prospective d'intervention dans un hôpital universitaire.

      Participants

      Cinquante-deux yeux de 52 adultes dont le glaucome était réfractaire malgré l'administration de la dose maximale tolérée du traitement médicamenteux et/ou qui n’étaient pas de bons candidats à la chirurgie filtrante.

      Méthodes

      Les participants ont reçu un traitement reposant sur un laser diode micropulsé trans-scléral sur 360 degrés (2000 mW; cycle de travail de 31,33 %), dont la durée a été ajustée en fonction de la pigmentation de l'iris et de la gravité du glaucome (160–320 secondes). Ils ont fait l'objet d'un suivi de 18 mois visant à mesurer les paramètres suivants : pression intraoculaire (PIO), nombre de médicaments utilisés, acuité visuelle corrigée de loin (AVCL), progression du glaucome (périmétrie Humphrey Sita 24-2 et tomographie par cohérence optique Cirrus haute définition) et complications. Le principal paramètre de mesure était le taux de réussite absolue à 18 mois, qui se définissait comme suit : PIO se situant entre 6 et 21 mm Hg, réduction d'au moins 25 % de la PIO et prise d'un nombre égal ou moindre de médicaments antiglaucomateux. Un succès mitigé correspondait à l'augmentation du nombre d'antiglaucomateux utilisés. L’échec, pour sa part, se définissait comme une incapacité à répondre aux critères de réussite ou par le besoin de recourir à une chirurgie incisionnelle.

      Résultats

      Le taux de réussite absolue du traitement se chiffrait à 61,5 % après 12 mois et à 59,6 % après 18 mois. La PIO moyenne avait diminué de 35,6 % à 18 mois (23,6 ± 6,5 mm Hg au départ; 15,2 ± 4,1 mm Hg après 18 mois; p < 0,001). Le laser micropulsé trans-scléral n'a pas réduit significativement le nombre de collyres antiglaucomateux utilisés (p = 0,075). Cependant, on note une baisse du nombre de patients qui devaient prendre un traitement antiglaucomateux oral : 15 yeux (29 %) au départ et 10 yeux (20 %) après 18 mois. Huit patients (15 %) ont subi une perte de vision de ≥ 2 lignes après le traitement. Trois patients (6 %) ont recouvré leur AVCL préopératoire après 1 mois, et 3 patients (6 %), après 3 mois. Il s'est produit une perte de vision persistante chez 2 patients (4 %). Aucune complication oculaire n'est survenue dans 84,6 % des yeux. La chirurgie incisionnelle est devenue nécessaire dans 25 % des yeux en raison d'un glaucome réfractaire au laser micropulsé trans-scléral.

      Conclusions

      Le laser micropulsé trans-scléral représente une option thérapeutique intéressante, sûre et prévisible pour obtenir une baisse modérée de la PIO. Cette innocuité supérieure fait du laser micropulsé trans-scléral un traitement à envisager plus tôt dans la prise en charge du glaucome.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Quigley HA
        • Broman AT.
        The number of people with glaucoma worldwide in 2010 and 2020.
        Br J Ophthalmol. 2006; 90: 262-267
        • Tham YC
        • Li X
        • Wong TY
        • Quigley HA
        • Aung T
        • Cheng CY.
        Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis.
        Ophthalmology. 2014; 121: 2081-2090
        • Chang P
        • Hodapp EA.
        Risk Factors in Glaucomatous Progression.
        Glaucoma Today. 2015; 13: 24-25
        • Lai JS
        • Tham CC
        • Lam DS.
        Surgical management of chronic closed angle glaucoma.
        Asian Pac J Ophthalmol. 2003; 15: 5-10
        • Nguyen QH.
        Primary surgical management refractory glaucoma: tubes as initial surgery.
        Curr Opin Ophthalmol. 2009; 20: 122-125
        • Schlote T
        • Derse M
        • Rassmann K
        • Nicaeus T
        • Dietz K
        • Thiel HJ.
        Efficacy and safety of contact trans-scleral diode laser cyclophotocoagulation for advanced glaucoma.
        J Glaucoma. 2001; 10: 294-301
        • Agarwal HC
        • Gupta V
        • Sihota R.
        Evaluation of contact versus non-contact diode laser cyclophotocoagulation for refractory glaucomas using similar energy settings.
        Clin Experiment Ophthalmol. 2004; 32: 33-38
        • Schlote T
        • Derse M
        • ZIerhut M.
        Trans-scleral diode laser cyclophotocoagulation for the treatment of refractory glaucoma secondary to inflammatory eye diseases.
        Br J Ophthalmol. 2000; 84: 999-1003
        • Egbert PR
        • Fladoyor S
        • Budenz DL
        • Dadzie P
        • Byrd S.
        Diode laser trans-scleral cyclophotocoagulation as a primary surgical treatment for primary open angle glaucoma.
        Arch Ophthalmol. 2001; 119: 345-350
        • Leszczynski R
        • Gierek-Lapinska A
        • Forminska-Kapuscik M.
        Trans-scleral cyclophotocoagulation in the treatment of secondary glaucoma.
        Med Sci Monit. 2004; 10: CR542-CR548
        • Rotchford AP
        • Jayasawal R
        • Madhusudhan S
        • Ho S
        • King AJ
        • Vernon SA.
        Transscleral diode laser cycloablation in patients with good vision.
        Br J Ophthalmol. 2010; 94: 1180-1183
        • Pantcheva MB
        • Kahook MY
        • Schuman JS
        • Rubin MW
        • Noecker RJ.
        Comparison of acute structural and histopathological changes of the porcine ciliary processes after endoscopic cyclophotocoagulation and transscleral cyclophotocoagulation.
        Clin Exp Ophthalmol. 2007; 35: 270-274
        • Tan AM
        • Chockalingam M
        • Aquino MC
        • Lim ZI
        • See JL
        • Chew PT.
        Micropulse trans-scleral cyclophotocoagulation in the treatment of refractory glaucoma.
        Clin Experiment Ophthalmol. 2010; 38: 266-272
        • Aquino MC
        • Barton K
        • Tan AM
        • et al.
        Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study.
        Clin Experiment Ophthalmol. 2015; 43: 40-46
        • Moussa K
        • Feinstein M
        • Pekmezci M
        • et al.
        Histologic changes following continuous wave and micropulse transscleral cyclophotocoagulation: a randomized comparative study.
        Transl Vis Sci Technol. 2020; 9: 22
        • Maslin JS
        • Chen PP
        • Sinard J
        • Nguyen AT
        • Noecker R.
        Histopathologic changes in cadaver eyes after MicroPulse and continuous wave transscleral cyclophotocoagulation.
        Can J Ophthalmol. 2020 Aug; 55: 330-335
        • Bloom PA
        • Tsai JC
        • Sharma K
        • Miller MH
        • et al.
        Trans-scleral diode laser cyclophotocoagulation in the treatment of advanced refractory glaucoma.
        Ophthalmology. 1997; 104: 1508-1519
        • Kosoko O
        • Gaasterland DE
        • Pollack IP
        • Enger CL.
        Longterm outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group.
        Ophthalmology. 1996; 103: 1294-1302
        • Mistlberger A
        • Liebmann JM
        • Tschiderer H
        • Ritch R
        • Ruckhofer J
        • Grabner G
        Diode laser transscleral cyclophotocoagulation for refractory glaucoma.
        J Glaucoma. 2001; 10: 288-293
        • Oguri A
        • Takahashi E
        • Tomita G
        • Yamamoto T
        • Jikihara S
        • Kitazawa Y.
        Transscleral cyclophotocoagulation with the diode laser for neovascular glaucoma.
        Ophthalmic Surg Lasers. 1998; 29: 722-727
        • Ness PJ
        • Khaimi MA
        • Feldman RM
        • et al.
        Intermediate term safety and efficacy of transscleral cyclophotocoagulation after tube shunt failure.
        J Glaucoma. 2012; 21: 83-88
        • Sivaprasad S
        • Sandhu R
        • Tandon A
        • Sayed-Ahmed K
        • McHugh DA.
        Subthreshold micropulse diode laser photocoagulation for clinically significant diabetic macular oedema: a three-year follow up.
        Clin Experiment Ophthalmol. 2007; 35: 640-644
        • Parodi MB
        • Spasse S
        • Iacono P
        • Di Stefano G
        • Canziani T
        • Ravalico G.
        Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared (810 nanometer) diode laser.
        Ophthalmology. 2006; 113: 2237-2242
        • Desmettre TJ
        • Mordon SR
        • Buzawa DM
        • Mainster MA.
        Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters.
        Br J Ophthalmol. 2006; 90: 709-712
        • Laursen ML
        • Moeller F
        • Sander B
        • Sjeolie AK.
        Subthreshold micropulse diode laser treatment in diabetic macular oedema.
        Br J Ophthalmol. 2004; 88: 1173-1179
        • Chong LP
        • Kelsoe W
        • Donovan D.
        Selective RPE damage by micropulsed diode laser photocoagulation.
        Invest Ophthalmol Vis Sci. 1992; 33: 722
        • Moorman CM
        • Hamilton AM.
        Clinical applications of the micropulse diode laser.
        Eye. 1999; 13: 145-150
        • Pollack JS
        • Kim JE
        • Pulido JS
        • Burke JM.
        Tissue effects of subclinical diode laser treatment of the retina.
        Arch Ophthalmol. 1998; 116: 1633-1639
        • Berger JW.
        Thermal modeling of micropulsed diode laser retinal photocoagulation.
        Lasers Surg Med. 1997; 20: 409-415
        • Souissi S
        • Le Mer Y
        • Metge F
        • et al.
        An update on continuous-wave cyclophotocoagulation (CW-CPC) and micropulse transscleral laser treatment (MP-TLT) for adult and paediatric refractory glaucoma.
        Acta Ophthalmol. 2020; (Epub ahead of print. PMID: 33222409)https://doi.org/10.1111/aos.14661
        • Abdelrahman AM
        • El Sayed YM
        Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma.
        J Glaucoma. 2018; 27: 900-905
        • Sanchez FG
        • Peirano-Bonomi JC
        • Brossard Barbosa N
        • Khoueir Z
        • Grippo TM
        Update on micropulse transscleral cyclophotocoagulation.
        J Glaucoma. 2020; 29: 598-603
        • Sanchez FG
        • Peirano-Bonomi JC
        • Grippo TM.
        Micropulse transscleral cyclophotocoagulation: a hypothesis for the ideal parameters.
        Med Hypothesis Discov Innov Ophthalmol. 2018; 7: 94-100
        • Sarrafpour S
        • Saleh D
        • Ayoub S
        • Radcliffe NM.
        Micropulse transscleral cyclophotocoagulation: a look at long-term effectiveness and outcomes.
        Ophthalmol Glaucoma. 2019; 2: 167-171
        • Kuchar S
        • Moster MR
        • Reamer CB
        • Waisbourd M.
        Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma.
        Lasers Med Sci. 2016; 31: 393-396
        • Emanuel ME
        • Grover DS
        • Fellman RL
        • et al.
        Micropulse Cyclophotocoagulation: Initial Results in Refractory Glaucoma.
        J Glaucoma. 2017; 26: 726-729
        • Williams AL
        • Moster MR
        • Rahmatnejad K
        • et al.
        Clinical Efficacy and Safety Profile of Micropulse Transscleral Cyclophotocoagulation in Refractory Glaucoma.
        J Glaucoma. 2018; 27: 445-449
        • Liu GJ
        • Mizukawa A
        • Okisaka S.
        Mechanism of intraocular pressure decrease after contact trans-scleral continuous wave Nd:YAG laser cyclophotocoagulation.
        Ophthalmic Res. 1994; 26: 65-79
        • Fea AM
        • Bosone A
        • Rolle T
        • Brogliatti B
        • Grignolo FM.
        Micropulse diode laser trabeculoplasty (MDLT): a phase II clinical study with 12 months follow-up.
        Clin Ophthalmol. 2008; 2: 247-252
        • Johnstone M
        • Murray J.
        Transcleral Laser Induces Aqueous Outflow Pathway Motion & Reorganization. 2017. AGS, Coronado, CA2017
        • Najem K
        • Sebag M
        • Harissi-Dagher M.
        Boston keratoprosthesis type 1 device leak.
        Can J Ophthalmol. 2014; 49: 106-108