Advertisement

Retrospective comparison between growth and retinopathy of prematurity model versus WINROP model

Published:March 23, 2021DOI:https://doi.org/10.1016/j.jcjo.2021.02.030

      Abstract

      Objective

      To compare the weight and insulin-like growth factor-1 in neonatal retinopathy (WINROP) to the growth and retinopathy of prematurity (G-ROP) model in a Portuguese cohort.

      Design

      Retrospective case series.

      Methods

      Clinical records of consecutive infants who underwent retinopathy of prematurity (ROP) screening from April 2012 to May 2019 were retrospectively reviewed. Both WINROP and G-ROP models were accessed for sensitivity and specificity for type 1 ROP. A separate analysis of both algorithms was performed in infants with gestational age (GA) <30 weeks.

      Results

      Of the 375 infants included in the study, 313 were eligible for G-ROP analysis and 311 for WINROP. In the G-ROP group, 22 infants developed type 1 ROP (sensitivity 90.91%, 95% confidence interval [CI] 70.84%–98.98%). In the WINROP group, 23 infants needed treatment (sensitivity of 86.96%, 95% CI 66.41%–97.22%). Both models reached 100% sensitivity for type 1 ROP if restricted to GA <30 weeks.

      Conclusions

      Both models were easy to use and had similar sensitivities. If restricted to GA <30 weeks, both models detected all type 1 ROP.

      Résumé

      Objectif

      Comparer l'algorithme winrop® établissant un lien entre le poids et l'IGF-1 (insulin-like growth factor-1 ou somatomédine C) dans la rétinopathie du nouveau-né au modèle G-ROP (growth-retinopathy of prematurity) associant la croissance et la rétinopathie du prématuré (RDP) au sein d'une cohorte portugaise.

      Nature

      Étude rétrospective d'une série de cas.

      Méthodes

      On a procédé à l'examen rétrospectif des dossiers médicaux de nourrissons consécutifs qui ont subi un dépistage de la rétinopathie du prématuré (RDP) entre avril 2012 et mai 2019. On a vérifié la sensibilité et la spécificité de l'algorithme winrop® et du modèle G-ROP quant au dépistage de la RDP de type 1. Une analyse distincte des 2 algorithmes a été réalisée chez des nourrissons dont l’âge gestationnel (AG) était < 30 semaines.

      Résultats

      Sur les 375 nourrissons qui ont été inclus à l’étude, 313 étaient admissibles à l'analyse au moyen du modèle G-ROP et 311, au moyen de l'algorithme winrop®. Dans le groupe G-ROP, 22 nourrissons ont présenté une RDP de type 1 (sensibilité de 90,91 %; intervalle de confiance [IC] à 95 % : 70,84 %–98,98 %). Dans le groupe algorithme winrop®, 23 nourrissons ont dû recevoir un traitement (sensibilité de 86,96 %; IC à 95 % : 66,41 %–97,22 %). Les 2 modèles ont obtenu une sensibilité de 100 % pour ce qui est du dépistage de la RDP de type 1 si l'on se limitait aux nourrissons dont l'AG était < 30 semaines.

      Conclusions

      Les 2 modèles ont été faciles à utiliser et offraient une sensibilité semblable. Lorsque l'on se limitait aux nourrissons dont l'AG était < 30 semaines, les 2 modèles permettaient le dépistage de tous les cas de RDP de type 1.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gilbert C.
        Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control.
        Early Hum. Dev. 2008; 84: 77-82
        • Lin L.
        • Binenbaum G
        Postnatal weight gain and retinopathy of prematurity.
        Semin. Perinatol. 2019; 43(6): 352-359
        • Henriques G
        • Brito C
        • Teixeira S.
        Consenso Clínico: retinopatia da prematuridade.
        Seção de Neonatologia, Sociedade Portuguesa de Pediatria. 2014; : 1-12
        • Lofqvist C
        • Andersson E
        • Sigurdsson J
        • et al.
        Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity.
        Archives of Ophthalmology. 2006; 124: 1711-1718
        • Lofqvist C
        • Hansen-Pupp I
        • Andersson E
        • et al.
        Validation of a new retinopathy of prematurity screening method monitoring longitudinal postnatal weight and insulinlike growth factor I.
        Archives of Ophthalmology. 2009; 127: 622-627
        • Eckert GU
        • Fortes Filho JB
        • Maia M
        • Procianoy RS
        A predictive score for retinopathy of prematurity in very low birth weight preterm infants.
        Eye. 2012; 26: 400-406
        • Binenbaum G
        • Ying GS
        • Quinn GE
        • et al.
        A clinical prediction model to stratify retinopathy of prematurity risk using postnatal weight gain.
        Pediatrics. 2011; 127: e607-e614
        • Binenbaum G
        • Ying GS
        • Quinn GE
        • et al.
        The CHOP postnatal weight gain, birth weight, and gestational age retinopathy of prematurity risk model.
        Archives of Ophthalmology. 2012; 130: 1560-1565
        • Binenbaum G
        • Bell EF
        • Donohue P
        • et al.
        Development of modified screening criteria for retinopathy of prematurity: primary results from the postnatal growth and retinopathy of prematurity study.
        JAMA Ophthalmology. 2018; 136: 1034-1040
        • Zin AA
        • Moreira ME
        • Bunce C
        • Darlow BA
        • Gilbert CE.
        Retinopathy of prematurity in 7 neonatal units in Rio de Janeiro: screening criteria and workload implications.
        Pediatrics. 2010; 126: e410-e417
      1. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191--4.

      2. International Committee for the Classification of Retinopathy of P. The International Classification of Retinopathy of Prematurity revisited.
        Archives of Ophthalmology. 2005; 123: 991-999
      3. Early Treatment For Retinopathy Of Prematurity Cooperative G. Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial.
        Archives of Ophthalmology. 2003; 121: 1684-1694
        • Hellstrom A
        • Perruzzi C
        • Ju M
        • et al.
        Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity.
        Proc Natl Acad Sci U S A. 2001; 98: 5804-5808
        • Choi JH
        • Lofqvist C
        • Hellstrom A
        • Heo H.
        Efficacy of the screening algorithm WINROP in a Korean population of preterm infants.
        JAMA Ophthalmology. 2013; 131: 62-66
        • Piermarocchi S
        • Bini S
        • Martini F
        • et al.
        Predictive algorithms for early detection of retinopathy of prematurity.
        Acta Ophthalmologica. 2017; 95: 158-164
        • Piyasena C
        • Dhaliwal C
        • Russell H
        • et al.
        Prediction of severe retinopathy of prematurity using the WINROP algorithm in a birth cohort in South East Scotland.
        Arch Dis Child Fetal Neonatal Ed. 2014; 99: F29-F33
        • Sun H
        • Kang W
        • Cheng X
        • et al.
        The use of the WINROP screening algorithm for the prediction of retinopathy of prematurity in a Chinese population.
        Neonatology. 2013; 104: 127-132
        • Zepeda-Romero LC
        • Hard AL
        • Gomez-Ruiz LM
        • et al.
        Prediction of retinopathy of prematurity using the screening algorithm WINROP in a Mexican population of preterm infants.
        Archives of Ophthalmology. 2012; 130: 720-723
        • Hard AL
        • Lofqvist C
        • Fortes Filho JB
        • Procianoy RS
        • Smith L
        • Hellstrom A
        Predicting proliferative retinopathy in a Brazilian population of preterm infants with the screening algorithm WINROP.
        Archives of Ophthalmology. 2010; 128: 1432-1436
        • Ko CH
        • Kuo HK
        • Chen CC
        • et al.
        Using WINROP as an adjuvant screening tool for retinopathy of prematurity in southern Taiwan.
        Am J Perinatol. 2015; 30: 149-154
        • Chaves-Samaniego MJ
        • Gómez Cabrera C
        • Chaves-Samaniego MC
        • et al.
        Multicenter validation study of the WINROP algorithm as a method for detecting retinopathy of prematurity.
        J Matern Fetal Neonatal Med. 2020; 33(8): 1302-1306
        • Desai S
        • Athikarisamy SE
        • Lundgren P
        • Simmer K
        • Lam GC.
        Validation of WINROP (online prediction model) to identify severe retinopathy of prematurity (ROP) in an Australian preterm population: a retrospective study.
        Eye (Lond). 2020; (doi: 10.1038/s41433-020-1094-7. [e-pub ahead of print])
        • Ko CH
        • Kuo HK
        • Chen CC
        • et al.
        Using WINROP as an adjuvant screening tool for retinopathy of prematurity in Southern Taiwan.
        Am. J. Perinatol. 2014; 30(2): 149-154
        • Sanghi G
        • Narang A
        • Narula S
        • Dogra MR.
        WINROP algorithm for prediction of sight threatening retinopathy of prematurity: Initial experience in Indian preterm infants.
        Indian J. Ophthalmol. 2018; 66: 110-113
        • Jung JL
        • Wagner BD
        • McCourt EA
        • et al.
        Validation of WINROP for detecting retinopathy of prematurity in a North American cohort of preterm infants.
        J. AAPOS. 2017; 21: 229-233
        • Malheiro L
        • Falcão I
        • Neiva L
        • et al.
        Application of the WINROP model in retinopathy of prematurity (ROP) screening in a Portuguese cohort of premature infants.
        Revista Brasileira de Oftalmologia. 2019; 78: 30-36
        • Binenbaum G
        • Tomlinson LA
        • de Alba Campomanes AG
        • et al.
        Validation of the postnatal growth and retinopathy of prematurity screening criteria.
        JAMA Ophthalmol. 2019; 138(1): 31-37https://doi.org/10.1001/jamaophthalmol.2019.4517
        • Shiraki A
        • Fukushima Y
        • Kawasaki R
        • et al.
        Retrospective validation of the postnatal growth and retinopathy of prematurity (G-ROP) criteria in a Japanese cohort.
        Am J Ophthalmol. 2019; 205: 50-53
        • Yabas Kiziloglu O
        • Coskun Y
        • Akman I
        Assessment of the G-ROP study criteria for predicting retinopathy of prematurity: results from a tertiary centre in Turkey.
        Int Ophthalmol. 2020; 40(7): 1647-1652
        • Zupancic JAF
        • Ying GS
        • de Alba Campomanes A
        • Tomlinson LA
        • Binenbaum G
        • Group G-RS.
        Evaluation of the economic impact of modified screening criteria for retinopathy of prematurity from the postnatal growth and ROP (G-ROP) study.
        J Perinatol. 2020; 40: 1100-1108
        • Chaves-Samaniego MJ
        • Gómez Cabrera C
        • Chaves-Samaniego MC
        • et al.
        Multicenter validation study of the WINROP algorithm as a method for detecting retinopathy of prematurity.
        J Matern Fetal Neonatal Med. 2020; 33: 1302-1306
        • Hellstrom A
        • Hard AL
        • Engstrom E
        • et al.
        Early weight gain predicts retinopathy in preterm infants: new, simple, efficient approach to screening.
        Pediatrics. 2009; 123: e638-e645