Abstract
Objective
To investigate the evolution of treatment-naive type 3 macular neovascularization
(MNV) undergoing anti-vascular endothelial growth factor (VEGF) treatment through
volume rendered three-dimensional (3D) optical coherence tomography angiography (OCTA).
Design
Retrospective observational study.
Participants
Patients with type 3 MNV and age-related macular degeneration (AMD).
Methods
Included subjects had three loading injections of an anti-VEGF agent. The OCTA volume
data at baseline and follow-up were processed with a previously published algorithm
in order to obtain a volume-rendered representation of type 3 MNV. Progressive changes
in type 3 lesions were analyzed via 3D OCTA volume rendering.
Results
A total of 14 treatment-naive eyes with type 3 MNV from 11 AMD patients (7 females)
were included. At both baseline and follow-up visits, a type 3 MNV complex was identifiable.
Each complex was composed of a mean number of 2.5 ± 0.7 vascular branches at baseline
and 1.4 ± 0.6 at the follow-up visit (p < 0.0001). The mean changes in central macular thickness and visual acuity were significantly
correlated with modifications in the number of type 3 MNV branches (ρ = –0.533, p = 0.049, and ρ = –0.581, and p = 0.040, respectively).
Conclusions
This study demonstrated that type 3 lesions do not disappear completely after loading
treatment, as indicated previously by histopathologic studies. Importantly, quantitative
volume changes in type 3 lesions are directly associated with treatment response.
Résumé
Objectif
Examiner l’évolution d'une néovascularisation maculaire (NVM) de type 3 chez des patients
qui n'ont jamais été traités et auxquels on administre un anti-VEGF (facteur de croissance
endothélial vasculaire) grâce aux images obtenues à l'angiographie-tomographie par
cohérence optique (OCTA) tridimensionnelle (3D) par le biais de rendu volumique.
Nature
Étude d'observation rétrospective.
Participants
Patients présentant une NVM de type 3 et une dégénérescence maculaire liée à l’âge
(DMLA).
Méthodes
Les participants ont reçu 3 bolus d'un anti-VEGF. On a eu recours à un algorithme
publié antérieurement pour manipuler les données de l'OCTA au départ et lors du suivi
afin d'obtenir une représentation de la NVM de type 3 par le biais de rendu volumique.
Les modifications progressives des lésions de type 3 ont été analysées grâce à l'OCTA
en 3D par le biais de rendu volumique.
Résultats
Au total ont été inclus 14 yeux (11 patients qui avaient une DMLA, dont 7 femmes)
qui présentaient une NVM de type 3 qui n'avait jamais été traitée. Il était possible
d'identifier un complexe « NVM de type 3 » tant à la visite de départ qu’à celle de
suivi. Chaque complexe comprenait un nombre moyen de 2,5 ± 0,7 branches vasculaires
au départ et de 1,4 ± 0,6 lors de la visite de suivi (p < 0,0001). On a pu établir
une corrélation significative entre la variation moyenne de l’épaisseur maculaire
centrale et de l'acuité visuelle, d'une part, et les modifications du nombre de branches
de NVM de type 3, d'autre part (p = –0,533; p = 0,049; p = –0,581 et p = 0,040, respectivement).
Conclusions
Notre étude a révélé que les lésions de type 3 ne disparaissent pas complètement après
l'administration de bolus, comme le révélaient des études histopathologiques antérieures.
Fait à noter, les variations quantitatives du volume des lésions de type 3 sont directement
associées à la réponse thérapeutique.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of OphthalmologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Prevalence of age-related macular degeneration in the United States.Arch Ophthalmol. 2004; 122: 564-572
- Classification of retinal pigment epithelial detachments associated with drusen.Graefes Arch Clin Exp Ophthalmol. 1992; 230: 11-19
- Deep retinal vascular anomalous complexes in advanced age-related macular degeneration.Ophthalmology. 1996; 103: 2042-2053
- Retinal angiomatous proliferation in age-related macular degeneration.Retina. 2001; 21: 416-434
- Review of retinal angiomatous proliferation or type 3 neovascularization.Retina. 2008; 28: 375-384
- Type 3 neovascularization: the expanded spectrum of retinal angiomatous proliferation.Retina. 2008; 28: 201-211
- Editorial: Do we need a new classification for choroidal neovascularization in age-related macular degeneration?.Retina. 2010; 30: 1333-1349
- OCT angiography and evaluation of the choroid and choroidal vascular disorders.Prog Retin Eye Res. 2018; 67: 30-55
- Type 3 neovascularization imaged with cross-sectional and en face optical coherence tomography angiography.Retina. 2017; 37: 234-246
- Nascent type 3 neovascularization in age-related macular degeneration.Ophthalmol Retina. 2018; 2: 1097-1106
- Optical coherence tomography angiography in early type 3 neovascularization.Retina. 2015; 35: 2236-2241
- Precursors of type 3 neovascularization: a multimodal imaging analysis.Retina. 2013; 33: 1241-1248
- Multimodal imaging of early stage 1 type 3 neovascularization with simultaneous eye-tracked spectral-domain optical coherence tomography and high-speed real-time angiography.Retina. 2013; 33: 1881-1887
- Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography.Retina. 2015; 35: 638-647
- An updated staging system of type 3 neovascularization using spectral domain optical coherence tomography.Retina. 2016; 36: S40-S49
- Optical coherence tomography angiography of type 3 neovascularisation in age-related macular degeneration after antiangiogenic therapy.Br J Ophthalmol. 2017; 101: 597-602
- Optical coherence tomography angiography in retinal vascular diseases and choroidal neovascularization.J Ophthalmol. 2015; 2015343515
- Reduced choriocapillaris flow in eyes with type 3 neovascularization due to age-related macular degeneration.Retina. 2018; 38: 1968-1976
- Optical coherence tomography angiography.Prog Retin Eye Res. 2017; 64: 1-55https://doi.org/10.1016/j.preteyeres.2017.11.003
- Volume rendering of optical coherence tomography angiography reveals extensive retinal vascular contributions to neovascularization in ocular toxoplasmosis.Retina. 2015; 35: 2421-2422
- Volume-rendered angiographic and structural optical coherence tomography angiography of macular telangiectasia type 2.Retina. 2017; 37: 424-435
- Rotational three-dimensional OCTA: a notable new imaging tool to characterize type 3 macular neovascularization.Sci Rep. 2019; 9: 17053
- In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina.Sci Rep. 2019; 9: 16789
- Quantification of diabetic macular ischemia using novel three-dimensional optical coherence tomography angiography metrics.J Biophotonics. 2020; 13
- Novel multimodal imaging and volume rendering of type 3 macular neovascularization.Retina. 2020; 40: e55-e57
- New proposal for the pathophysiology of type 3 neovascularization as based on multimodal imaging findings.Retina. 2019; 39: 1451-1464
- Clinicopathologic correlation of retinal angiomatous proliferation treated with ranibizumab.Retina. 2017; 37: 1620-1624
- Clinicopathologic correlation of anti–vascular endothelial growth factor–treated type 3 neovascularization in age-related macular degeneration.Ophthalmology. 2018; 125: 276-287
- Changes in optical coherence tomography angiography and disease activity in type 3 neovascularization after anti–vascular endothelial growth factor treatment.Retina. 2020; 40: 1245-1254
- OCT-A characterisation of recurrent type 3 macular neovascularisation.Br J Ophthalmol. 2020; 105: 222-226
- Characteristics of type 3 neovascularization lesions: focus on the incidence of multifocal lesions and the distribution of lesion location.Retina. 2020; 40: 1124-1131
Article Info
Publication History
Published online: May 28, 2021
Identification
Copyright
© 2021 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.