Advertisement

Advances in magnetic resonance imaging of orbital disease

      Abstract

      Magnetic resonance imaging (MRI) is increasingly used by the orbital surgeon to aid in the diagnosis, surgical planning, and monitoring of orbital disease. MRI provides superior soft tissue detail compared with computed tomography or ultrasound, and advancing techniques enhance its ability to highlight abnormal orbital pathology. Diffusion-weighted imaging is a specialized technique that uses water molecule diffusion patterns in tissue to generate contrast signals and can help distinguish malignant from benign lesions. Steady-state free precession sequences such as Constructive Interference in Steady-State (CISS) and Fast Imaging Employing Steady-state Acquisition (FIESTA) generate highly detailed, 3-dimensional reconstructed images and are particularly useful in distinguishing structures adjacent to cerebral spinal fluid. Magnetic resonance angiography can be used to characterize vascular lesions within the orbit. New developments in magnetic field strength as well as the use of orbital surface coils achieve increasingly improved imaging resolution.

      Résumé

      Les spécialistes de la chirurgie orbitaire ont de plus en plus souvent recours à l'imagerie par résonance magnétique (IRM) pour faciliter le diagnostic, la planification chirurgicale et la surveillance des atteintes orbitaires. Comparativement à la tomodensitométrie ou à l’échographie, l'IRM permet de mieux visualiser les détails des tissus mous, sans compter que les progrès technologiques améliorent sa capacité à mettre en relief les anomalies orbitaires. L'IRM de diffusion est une technique spécialisée qui fait appel à la diffusion de molécules d'eau pour générer un contraste dans les images IRM qui permet ainsi de distinguer les tumeurs cancéreuses des lésions bénignes. Les séquences de précession libre à l'état stable, notamment l'interférence constructive à l’état stable (CISS) et les séquences en écho de gradient à l'état d'équilibre (FIESTA®) permettent la reconstruction d'images tridimensionnelles très détaillées qui sont particulièrement utiles lorsque vient le temps de visualiser les structures adjacentes au liquide céphalorachidien. L'angiographie par résonance magnétique peut servir à visualiser les lésions vasculaires à l'intérieur de l'orbite. On arrive à obtenir des images dont la résolution est de plus en plus élevée grâce aux progrès de l'intensité du champ magnétique et à l'utilisation de bobines de surface orbitaires.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoch M
        • Win W
        • Hagiwara M
        • Fatterpekar G
        • Patel S.
        Orbital lesions with low signal intensity on T2-weighted imaging.
        Clin Radiol. 2016; 71: e88-e95
        • Lee DH.
        Mechanisms of contrast enhancement in magnetic resonance imaging.
        Can Assoc Radiol J. 1991; 42: 6-12
        • Cakirer S
        • Cakirer D
        • Basak M
        • Durmaz S
        • Altuntas Y
        • Yigit U.
        Evaluation of extraocular muscles in the edematous phase of Graves ophthalmopathy on contrast-enhanced fat-suppressed magnetic resonance imaging.
        J Comput Assist Tomogr. 2004; 28: 80-86
        • Tien RD
        • Chu PK
        • Hesselink JR
        • Szumowski J.
        Intra- and paraorbital lesions: value of fat-suppression MR imaging with paramagnetic contrast enhancement.
        AJNR Am J Neuroradiol. 1991; 12: 245-253
        • Lee AG
        • Johnson MC
        • Policeni BA
        • Smoker WR.
        Imaging for neuro-ophthalmic and orbital disease - a review.
        Clin Exp Ophthalmol. 2009; 37: 30-53
        • Passi N
        • Degnan AJ
        • Levy LM.
        MR imaging of papilledema and visual pathways: effects of increased intracranial pressure and pathophysiologic mechanisms.
        AJNR Am J Neuroradiol. 2013; 34: 919-924
        • Mayer E
        • Herdman G
        • Burnett C
        • Kabala J
        • Goddard P
        • Potts MJ.
        Serial STIR magnetic resonance imaging correlates with clinical score of activity in thyroid disease.
        Eye (Lond). 2001; 15: 313-318
        • Mayer EJ
        • Fox DL
        • Herdman G
        • et al.
        Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease.
        Eur J Radiol. 2005; 56: 20-24
        • Tortora F
        • Cirillo M
        • Ferrara M
        • et al.
        Disease activity in Graves' ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score.
        Neuroradiol J. 2013; 26: 555-564
        • Higashiyama T
        • Iwasa M
        • Ohji M.
        Quantitative analysis of inflammation in orbital fat of thyroid-associated ophthalmopathy using MRI signal intensity.
        Sci Rep. 2017; 7: 16874
        • Prummel MF
        • Gerding MN
        • Zonneveld FW
        • Wiersinga WM.
        The usefulness of quantitative orbital magnetic resonance imaging in Graves' ophthalmopathy.
        Clin Endocrinol (Oxf). 2001; 54: 205-209
        • Tachibana S
        • Murakami T
        • Noguchi H
        • et al.
        Orbital magnetic resonance imaging combined with clinical activity score can improve the sensitivity of detection of disease activity and prediction of response to immunosuppressive therapy for Graves' ophthalmopathy.
        Endocr J. 2010; 57: 853-861
        • Das T
        • Roos JCP
        • Patterson AJ
        • Graves MJ
        • Murthy R.
        T2-relaxation mapping and fat fraction assessment to objectively quantify clinical activity in thyroid eye disease: an initial feasibility study.
        Eye (Lond). 2019; 33: 235-243
        • Baliyan V
        • Das CJ
        • Sharma R
        • Gupta AK.
        Diffusion weighted imaging: technique and applications.
        World J Radiol. 2016; 8: 785-798
        • Lope LA
        • Hutcheson KA
        • Khademian ZP.
        Magnetic resonance imaging in the analysis of pediatric orbital tumors: utility of diffusion-weighted imaging.
        J aapos. 2010; 14: 257-262
        • Griffin AS
        • Hoang JK
        • Malinzak MD.CT
        • of the orbit MRI
        Int Ophthalmol Clin. 2018; 58: 25-59
        • Kanekar SG
        • Zacharia T
        • Roller R.
        Imaging of stroke: part 2, pathophysiology at the molecular and cellular levels and corresponding imaging changes.
        AJR Am J Roentgenol. 2012; 198: 63-74
        • Bae YJ
        • Choi BS
        • Jeong HK
        • Sunwoo L
        • Jung C
        • Kim JH.
        Diffusion-weighted imaging of the head and neck: influence of fat-suppression technique and multishot 2D navigated interleaved acquisitions.
        AJNR Am J Neuroradiol. 2018; 39: 145-150
        • Dudau C
        • Draper A
        • Gkagkanasiou M
        • Charles-Edwards G
        • Pai I
        • Connor S.
        Cholesteatoma: multishot echo-planar vs non echo-planar diffusion-weighted MRI for the prediction of middle ear and mastoid cholesteatoma.
        BJR|Open. 2019; 120180015
        • Khemani S
        • Singh A
        • Lingam RK
        • Kalan A.
        Imaging of postoperative middle ear cholesteatoma.
        Clin Radiol. 2011; 66: 760-767
        • Lingam RK
        • Khatri P
        • Hughes J
        • Singh A.
        Apparent diffusion coefficients for detection of postoperative middle ear cholesteatoma on non-echo-planar diffusion-weighted images.
        Radiology. 2013; 269: 504-510
        • Ritchie AE
        • Lee V
        • Feeney C
        • Lingam RK.
        Using nonechoplanar diffusion-weighted MRI to assess treatment response in active Graves orbitopathy: a novel approach with 2 case reports.
        Ophthalmic Plast Reconstr Surg. 2016; 32: e67-e70
        • Lingam RK
        • Mundada P
        • Lee V.
        Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: an initial observational cohort study.
        Orbit. 2018; 37: 325-330
        • Kapur R
        • Sepahdari AR
        • Mafee MF
        • et al.
        MR imaging of orbital inflammatory syndrome, orbital cellulitis, and orbital lymphoid lesions: the role of diffusion-weighted imaging.
        AJNR Am J Neuroradiol. 2009; 30: 64-70
        • Roshdy N
        • Shahin M
        • Kishk H
        • et al.
        MRI in diagnosis of orbital masses.
        Curr Eye Res. 2010; 35: 986-991
        • Sepahdari AR
        • Politi LS
        • Aakalu VK
        • Kim HJ
        • Razek AA.
        Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate.
        AJNR Am J Neuroradiol. 2014; 35: 170-175
        • Politi LS
        • Forghani R
        • Godi C
        • et al.
        Ocular adnexal lymphoma: diffusion-weighted mr imaging for differential diagnosis and therapeutic monitoring.
        Radiology. 2010; 256: 565-574
        • Haradome K
        • Haradome H
        • Usui Y
        • et al.
        Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs.
        AJNR Am J Neuroradiol. 2014; 35: 1976-1982
        • Razek AA
        • Elkhamary S
        • Mousa A.
        Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging.
        Neuroradiology. 2011; 53: 517-522
        • Akansel G
        • Hendrix L
        • Erickson BA
        • et al.
        MRI patterns in orbital malignant lymphoma and atypical lymphocytic infiltrates.
        Eur J Radiol. 2005; 53: 175-181
        • Xu XQ
        • Hu H
        • Liu H
        • et al.
        Benign and malignant orbital lymphoproliferative disorders: Differentiating using multiparametric MRI at 3.0T.
        J Magn Reson Imaging. 2017; 45: 167-176
        • Ren J
        • Yuan Y
        • Wu Y
        • Tao X.
        Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.
        BMC Med Imaging. 2018; 18: 6
        • Cytryn AS
        • Putterman AM
        • Schneck GL
        • Beckman E
        • Valvassori GE.
        Predictability of magnetic resonance imaging in differentiation of orbital lymphoma from orbital inflammatory syndrome.
        Ophthalmic Plast Reconstr Surg. 1997; 13: 129-134
        • Sepahdari AR
        • Aakalu VK
        • Setabutr P
        • Shiehmorteza M
        • Naheedy JH
        • Mafee MF.
        Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy.
        Radiology. 2010; 256: 554-564
        • Hiwatashi A
        • Togao O
        • Yamashita K
        • et al.
        High resolution diffusion-weighted imaging for solitary orbital tumors: 3D Turbo field echo with diffusion-sensitized driven-equilibrium (DSDE-TFE) preparation technique.
        Clin Neuroradiol. 2018; 28: 261-266
        • Yuan Y
        • Kuai XP
        • Chen XS
        • Tao XF.
        Assessment of dynamic contrast-enhanced magnetic resonance imaging in the differentiation of malignant from benign orbital masses.
        Eur J Radiol. 2013; 82: 1506-1511
        • Xu XQ
        • Qian W
        • Ma G
        • et al.
        Combined diffusion-weighted imaging and dynamic contrast-enhanced MRI for differentiating radiologically indeterminate malignant from benign orbital masses.
        Clin Radiol. 2017; 72 (903.e909–15)
        • Ro SR
        • Asbach P
        • Siebert E
        • Bertelmann E
        • Hamm B
        • Erb-Eigner K.
        Characterization of orbital masses by multiparametric MRI.
        Eur J Radiol. 2016; 85: 324-336
        • Sun B
        • Song L
        • Wang X
        • et al.
        Lymphoma and inflammation in the orbit: diagnostic performance with diffusion-weighted imaging and dynamic contrast-enhanced MRI.
        J Magn Reson Imaging. 2017; 45: 1438-1445
        • Stuckey SL
        • Harris AJ
        • Mannolini SM.
        Detection of acoustic schwannoma: use of constructive interference in the steady state three-dimensional MR.
        AJNR Am J Neuroradiol. 1996; 17: 1219-1225
        • Seitz J
        • Held P
        • Strotzer M
        • et al.
        Magnetic resonance imaging in patients diagnosed with papilledema: a comparison of 6 different high-resolution T1- and T2(*)-weighted 3-dimensional and 2-dimensional sequences.
        J Neuroimaging. 2002; 12: 164-171
        • Wani NA
        • Jehangir M
        • Lone PA.
        Tolosa-Hunt syndrome demonstrated by constructive interference steady state magnetic resonance imaging.
        J Ophthalmic Vis Res. 2017; 12: 106-109
        • Sheth S
        • BFt Branstetter
        • Escott EJ.
        Appearance of normal cranial nerves on steady-state free precession MR images.
        Radiographics. 2009; 29: 1045-1055
        • Yousry I
        • Camelio S
        • Schmid UD
        • et al.
        Visualization of cranial nerves I-XII: value of 3D CISS and T2-weighted FSE sequences.
        Eur Radiol. 2000; 10: 1061-1067
        • Held P
        • Nitz W
        • Seitz J
        • et al.
        Comparison of 2D and 3D MRI of the optic and oculomotor nerve anatomy.
        Clin Imaging. 2000; 24: 337-343
        • Yazici Z
        • Yazici B
        • Tuncel E.
        Findings of magnetic resonance imaging after optic nerve sheath decompression in patients with idiopathic intracranial hypertension.
        Am J Ophthalmol. 2007; 144: 429-435
        • Wu SQ
        • Man FY
        • Jiao YH
        • Xian JF
        • Wang YD
        • Wang ZC.
        Magnetic resonance imaging findings in sporadic Mobius syndrome.
        Chin Med J (Engl). 2013; 126: 2304-2307
        • Jiao YH
        • Zhao KX
        • Wang ZC
        • et al.
        Magnetic resonance imaging of the extraocular muscles and corresponding cranial nerves in patients with special forms of strabismus.
        Chin Med J (Engl). 2009; 122: 2998-3002
        • Pilyugina SA
        • Fischbein NJ
        • Liao YJ
        • McCulley TJ.
        Isolated sixth cranial nerve aplasia visualized with Fast Imaging Employing Steady-State Acquisition (FIESTA) MRI.
        J Neuroophthalmol. 2007; 27: 127-128
        • Gizewski ER
        • Wanke I
        • Jurklies C
        • Gungor AR
        • Forsting M.
        T1 Gd-enhanced compared with CISS sequences in retinoblastoma: superiority of T1 sequences in evaluation of tumour extension.
        Neuroradiology. 2005; 47: 56-61
        • Kahana A
        • Lucarelli MJ
        • Grayev AM
        • Van Buren JJ
        • Burkat CN
        • Gentry LR.
        Noninvasive dynamic magnetic resonance angiography with time-resolved imaging of contrast kinetics (TRICKS) in the evaluation of orbital vascular lesions.
        Arch Ophthalmol. 2007; 125: 1635-1642
        • Ramey NA
        • Lucarelli MJ
        • Gentry LR
        • Burkat CN.
        Clinical usefulness of orbital and facial time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography.
        Ophthalmic Plast Reconstr Surg. 2012; 28: 361-368
        • Obusez EC
        • Lowe M
        • Oh SH
        • et al.
        7T MR of intracranial pathology: preliminary observations and comparisons to 3T and 1.5T.
        Neuroimage. 2018; 168: 459-476
        • Lindner T
        • Langner S
        • Graessl A
        • et al.
        High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla.
        Exp Eye Res. 2014; 125: 89-94
        • Singh AD
        • Platt SM
        • Lystad L
        • et al.
        Optic nerve assessment using 7-Tesla magnetic resonance imaging.
        Ocul Oncol Pathol. 2016; 2: 178-180
        • Georgouli T
        • Chang B
        • Nelson M
        • et al.
        Use of high-resolution microscopy coil MRI for depicting orbital anatomy.
        Orbit. 2008; 27: 107-114
        • Gupta C
        • Sharma P
        • Saxena R
        • Garg A
        • Sharma S.
        Clinical correlation of imaging findings in congenital cranial dysinnervation disorders involving abducens nerve.
        Indian J Ophthalmol. 2017; 65: 155-159
        • Rajab GZ
        • Suh SY
        • Demer JL.
        Magnetic resonance imaging in dissociated strabismus complex demonstrates generalized hypertrophy of rectus extraocular muscles.
        J aapos. 2017; 21: 205-209
        • Oatts JT
        • Kumar RN
        • Nyong'o OL
        Orbital surface coil imaging predicts surgical anatomy of medial rectus muscle in consecutive exotropia: a case report.
        J aapos. 2016; 20: 449-450
        • Sirin S
        • Schlamann M
        • Metz KA
        • et al.
        High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma: part 2: new vs. old imaging concept.
        Neuroradiology. 2015; 57: 815-824
        • ElKhamary SM
        • Galindo-Ferreiro A
        • AlGhafri L
        • Khandekar R
        • Schellini SA.
        Characterization of diffuse orbital mass using Apparent diffusion coefficient in 3-tesla MRI.
        Eur J Radiol Open. 2018; 5: 52-57