Abstract
Magnetic resonance imaging (MRI) is increasingly used by the orbital surgeon to aid
in the diagnosis, surgical planning, and monitoring of orbital disease. MRI provides
superior soft tissue detail compared with computed tomography or ultrasound, and advancing
techniques enhance its ability to highlight abnormal orbital pathology. Diffusion-weighted
imaging is a specialized technique that uses water molecule diffusion patterns in
tissue to generate contrast signals and can help distinguish malignant from benign
lesions. Steady-state free precession sequences such as Constructive Interference
in Steady-State (CISS) and Fast Imaging Employing Steady-state Acquisition (FIESTA)
generate highly detailed, 3-dimensional reconstructed images and are particularly
useful in distinguishing structures adjacent to cerebral spinal fluid. Magnetic resonance
angiography can be used to characterize vascular lesions within the orbit. New developments
in magnetic field strength as well as the use of orbital surface coils achieve increasingly
improved imaging resolution.
Résumé
Les spécialistes de la chirurgie orbitaire ont de plus en plus souvent recours à l'imagerie
par résonance magnétique (IRM) pour faciliter le diagnostic, la planification chirurgicale
et la surveillance des atteintes orbitaires. Comparativement à la tomodensitométrie
ou à l’échographie, l'IRM permet de mieux visualiser les détails des tissus mous,
sans compter que les progrès technologiques améliorent sa capacité à mettre en relief
les anomalies orbitaires. L'IRM de diffusion est une technique spécialisée qui fait
appel à la diffusion de molécules d'eau pour générer un contraste dans les images
IRM qui permet ainsi de distinguer les tumeurs cancéreuses des lésions bénignes. Les
séquences de précession libre à l'état stable, notamment l'interférence constructive
à l’état stable (CISS) et les séquences en écho de gradient à l'état d'équilibre (FIESTA®)
permettent la reconstruction d'images tridimensionnelles très détaillées qui sont
particulièrement utiles lorsque vient le temps de visualiser les structures adjacentes
au liquide céphalorachidien. L'angiographie par résonance magnétique peut servir à
visualiser les lésions vasculaires à l'intérieur de l'orbite. On arrive à obtenir
des images dont la résolution est de plus en plus élevée grâce aux progrès de l'intensité
du champ magnétique et à l'utilisation de bobines de surface orbitaires.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of OphthalmologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Orbital lesions with low signal intensity on T2-weighted imaging.Clin Radiol. 2016; 71: e88-e95
- Mechanisms of contrast enhancement in magnetic resonance imaging.Can Assoc Radiol J. 1991; 42: 6-12
- Evaluation of extraocular muscles in the edematous phase of Graves ophthalmopathy on contrast-enhanced fat-suppressed magnetic resonance imaging.J Comput Assist Tomogr. 2004; 28: 80-86
- Intra- and paraorbital lesions: value of fat-suppression MR imaging with paramagnetic contrast enhancement.AJNR Am J Neuroradiol. 1991; 12: 245-253
- Imaging for neuro-ophthalmic and orbital disease - a review.Clin Exp Ophthalmol. 2009; 37: 30-53
- MR imaging of papilledema and visual pathways: effects of increased intracranial pressure and pathophysiologic mechanisms.AJNR Am J Neuroradiol. 2013; 34: 919-924
- Serial STIR magnetic resonance imaging correlates with clinical score of activity in thyroid disease.Eye (Lond). 2001; 15: 313-318
- Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease.Eur J Radiol. 2005; 56: 20-24
- Disease activity in Graves' ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score.Neuroradiol J. 2013; 26: 555-564
- Quantitative analysis of inflammation in orbital fat of thyroid-associated ophthalmopathy using MRI signal intensity.Sci Rep. 2017; 7: 16874
- The usefulness of quantitative orbital magnetic resonance imaging in Graves' ophthalmopathy.Clin Endocrinol (Oxf). 2001; 54: 205-209
- Orbital magnetic resonance imaging combined with clinical activity score can improve the sensitivity of detection of disease activity and prediction of response to immunosuppressive therapy for Graves' ophthalmopathy.Endocr J. 2010; 57: 853-861
- T2-relaxation mapping and fat fraction assessment to objectively quantify clinical activity in thyroid eye disease: an initial feasibility study.Eye (Lond). 2019; 33: 235-243
- Diffusion weighted imaging: technique and applications.World J Radiol. 2016; 8: 785-798
- Magnetic resonance imaging in the analysis of pediatric orbital tumors: utility of diffusion-weighted imaging.J aapos. 2010; 14: 257-262
- Int Ophthalmol Clin. 2018; 58: 25-59
- Imaging of stroke: part 2, pathophysiology at the molecular and cellular levels and corresponding imaging changes.AJR Am J Roentgenol. 2012; 198: 63-74
- Diffusion-weighted imaging of the head and neck: influence of fat-suppression technique and multishot 2D navigated interleaved acquisitions.AJNR Am J Neuroradiol. 2018; 39: 145-150
- Cholesteatoma: multishot echo-planar vs non echo-planar diffusion-weighted MRI for the prediction of middle ear and mastoid cholesteatoma.BJR|Open. 2019; 120180015
- Imaging of postoperative middle ear cholesteatoma.Clin Radiol. 2011; 66: 760-767
- Apparent diffusion coefficients for detection of postoperative middle ear cholesteatoma on non-echo-planar diffusion-weighted images.Radiology. 2013; 269: 504-510
- Using nonechoplanar diffusion-weighted MRI to assess treatment response in active Graves orbitopathy: a novel approach with 2 case reports.Ophthalmic Plast Reconstr Surg. 2016; 32: e67-e70
- Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: an initial observational cohort study.Orbit. 2018; 37: 325-330
- MR imaging of orbital inflammatory syndrome, orbital cellulitis, and orbital lymphoid lesions: the role of diffusion-weighted imaging.AJNR Am J Neuroradiol. 2009; 30: 64-70
- MRI in diagnosis of orbital masses.Curr Eye Res. 2010; 35: 986-991
- Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate.AJNR Am J Neuroradiol. 2014; 35: 170-175
- Ocular adnexal lymphoma: diffusion-weighted mr imaging for differential diagnosis and therapeutic monitoring.Radiology. 2010; 256: 565-574
- Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs.AJNR Am J Neuroradiol. 2014; 35: 1976-1982
- Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging.Neuroradiology. 2011; 53: 517-522
- MRI patterns in orbital malignant lymphoma and atypical lymphocytic infiltrates.Eur J Radiol. 2005; 53: 175-181
- Benign and malignant orbital lymphoproliferative disorders: Differentiating using multiparametric MRI at 3.0T.J Magn Reson Imaging. 2017; 45: 167-176
- Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.BMC Med Imaging. 2018; 18: 6
- Predictability of magnetic resonance imaging in differentiation of orbital lymphoma from orbital inflammatory syndrome.Ophthalmic Plast Reconstr Surg. 1997; 13: 129-134
- Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy.Radiology. 2010; 256: 554-564
- High resolution diffusion-weighted imaging for solitary orbital tumors: 3D Turbo field echo with diffusion-sensitized driven-equilibrium (DSDE-TFE) preparation technique.Clin Neuroradiol. 2018; 28: 261-266
- Assessment of dynamic contrast-enhanced magnetic resonance imaging in the differentiation of malignant from benign orbital masses.Eur J Radiol. 2013; 82: 1506-1511
- Combined diffusion-weighted imaging and dynamic contrast-enhanced MRI for differentiating radiologically indeterminate malignant from benign orbital masses.Clin Radiol. 2017; 72 (903.e909–15)
- Characterization of orbital masses by multiparametric MRI.Eur J Radiol. 2016; 85: 324-336
- Lymphoma and inflammation in the orbit: diagnostic performance with diffusion-weighted imaging and dynamic contrast-enhanced MRI.J Magn Reson Imaging. 2017; 45: 1438-1445
- Detection of acoustic schwannoma: use of constructive interference in the steady state three-dimensional MR.AJNR Am J Neuroradiol. 1996; 17: 1219-1225
- Magnetic resonance imaging in patients diagnosed with papilledema: a comparison of 6 different high-resolution T1- and T2(*)-weighted 3-dimensional and 2-dimensional sequences.J Neuroimaging. 2002; 12: 164-171
- Tolosa-Hunt syndrome demonstrated by constructive interference steady state magnetic resonance imaging.J Ophthalmic Vis Res. 2017; 12: 106-109
- Appearance of normal cranial nerves on steady-state free precession MR images.Radiographics. 2009; 29: 1045-1055
- Visualization of cranial nerves I-XII: value of 3D CISS and T2-weighted FSE sequences.Eur Radiol. 2000; 10: 1061-1067
- Comparison of 2D and 3D MRI of the optic and oculomotor nerve anatomy.Clin Imaging. 2000; 24: 337-343
- Findings of magnetic resonance imaging after optic nerve sheath decompression in patients with idiopathic intracranial hypertension.Am J Ophthalmol. 2007; 144: 429-435
- Magnetic resonance imaging findings in sporadic Mobius syndrome.Chin Med J (Engl). 2013; 126: 2304-2307
- Magnetic resonance imaging of the extraocular muscles and corresponding cranial nerves in patients with special forms of strabismus.Chin Med J (Engl). 2009; 122: 2998-3002
- Isolated sixth cranial nerve aplasia visualized with Fast Imaging Employing Steady-State Acquisition (FIESTA) MRI.J Neuroophthalmol. 2007; 27: 127-128
- T1 Gd-enhanced compared with CISS sequences in retinoblastoma: superiority of T1 sequences in evaluation of tumour extension.Neuroradiology. 2005; 47: 56-61
- Noninvasive dynamic magnetic resonance angiography with time-resolved imaging of contrast kinetics (TRICKS) in the evaluation of orbital vascular lesions.Arch Ophthalmol. 2007; 125: 1635-1642
- Clinical usefulness of orbital and facial time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography.Ophthalmic Plast Reconstr Surg. 2012; 28: 361-368
- 7T MR of intracranial pathology: preliminary observations and comparisons to 3T and 1.5T.Neuroimage. 2018; 168: 459-476
- High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla.Exp Eye Res. 2014; 125: 89-94
- Optic nerve assessment using 7-Tesla magnetic resonance imaging.Ocul Oncol Pathol. 2016; 2: 178-180
- Use of high-resolution microscopy coil MRI for depicting orbital anatomy.Orbit. 2008; 27: 107-114
- Clinical correlation of imaging findings in congenital cranial dysinnervation disorders involving abducens nerve.Indian J Ophthalmol. 2017; 65: 155-159
- Magnetic resonance imaging in dissociated strabismus complex demonstrates generalized hypertrophy of rectus extraocular muscles.J aapos. 2017; 21: 205-209
- Orbital surface coil imaging predicts surgical anatomy of medial rectus muscle in consecutive exotropia: a case report.J aapos. 2016; 20: 449-450
- High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma: part 2: new vs. old imaging concept.Neuroradiology. 2015; 57: 815-824
- Characterization of diffuse orbital mass using Apparent diffusion coefficient in 3-tesla MRI.Eur J Radiol Open. 2018; 5: 52-57
Article Info
Publication History
Published online: May 28, 2021
Accepted:
April 28,
2021
Received in revised form:
March 16,
2021
Received:
November 19,
2020
Identification
Copyright
© 2021 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.