Advertisement

University of Toronto's redesigned ophthalmology curriculum and eye dissection lab

      Abstract

      Objective

      To present a multifaceted approach to ophthalmology undergraduate medical education and to assess the efficacy of an eye dissection laboratory in enhancing medical student learning.

      Design

      Curriculum review, validation, and student feedback evaluations.

      Participants

      Year 2 medical students enrolled in the University of Toronto's Doctor of Medicine Program.

      Methods

      Student feedback evaluations were compiled from the University of Toronto undergraduate medical education student surveys before 2012–2016 and following introduction of the redesigned foundations ophthalmology curriculum at the University of Toronto (2017–2018). Students who participated in the Eye Dissection Lab as part of the newly designed curriculum completed the pre- and postsession satisfaction and overall interest in ophthalmology questionnaires and a knowledge-based test.

      Results

      Analysis of 1640 student evaluations demonstrated an increase in ophthalmology curriculum rating following the launch of the foundations ophthalmology curriculum (p = 0.015). Among the 335 students who completed the eye dissection lab, there was a significant increase in the average scores for the satisfaction questionnaire, knowledge-based test, and level of interest in the field of ophthalmology from before and after the session, with improvements in scores noted in 91%, 42%, and 36% of the educational parameters of the participants, respectively (p < 0.001).

      Conclusions

      The newly designed foundations ophthalmology curriculum and the eye dissection lab at the University of Toronto serve as effective means for enhancing ophthalmology teaching in medical schools across Canada.

      Objectif

      Présenter une démarche multidimensionnelle dans le cadre de la formation médicale de premier cycle en ophtalmologie et évaluer l'efficacité d'un laboratoire de dissection oculaire pour ce qui est d'améliorer l'apprentissage des étudiants en médecine.

      Nature

      Révision et validation du programme d’études et évaluation de ce dernier par les étudiants.

      Participants

      Étudiants de deuxième année du programme de doctorat en médecine de l'Université de Toronto.

      Méthodes

      Les évaluations des étudiants ont été compilées à partir des sondages d’étudiants du programme de premier cycle en médecine avant (2012–2016) et après (2017–2018) la mise en œuvre du nouveau programme préparatoire en ophtalmologie à l'Université de Toronto. Les étudiants qui ont participé au laboratoire de dissection oculaire dans le cadre de la nouvelle version du programme ont répondu à des questionnaires de satisfaction avant et après la session de même qu’à des questionnaires d'intérêt général en ophtalmologie; ils ont également passé un test de connaissances.

      Résultats

      L'analyse des évaluations de 1640 étudiants a fait ressortir une amélioration de la cote du programme d'ophtalmologie après la mise en œuvre du programme préparatoire en ophtalmologie (p = 0,015). Parmi les 335 étudiants qui ont terminé le cursus du laboratoire de dissection oculaire, on a noté une hausse significative des cotes moyennes du questionnaire de satisfaction, du test de connaissances et du niveau d'intérêt envers l'ophtalmologie, comparativement à ce qui avait été observé avant la session. On a enregistré une amélioration des cotes pour 91 %, 42 % et 36 % des paramètres pédagogiques des participants, respectivement (p < 0,001).

      Conclusions

      Le nouveau programme préparatoire en ophtalmologie et le laboratoire de dissection oculaire de l'Université de Toronto représentent une approche efficace pour améliorer l'enseignement en ophtalmologie dans les facultés de médecine du Canada.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Philip CT
        • Unruh KP
        • Lachman N
        • Pawlina W.
        An explorative learning approach to teaching clinical anatomy using student generated content.
        Anat Sci Educ. 2008; 1: 106-110
        • Chan LK
        • Ganguly PK.
        Evaluation of small-group teaching in human gross anatomy in a Caribbean medical school.
        Anat Sci Educ. 2008; 1: 19-22
        • Noble J
        • Schendel S
        • Daniel S
        • Baerlocher MO.
        Motivations and future trends: a survey of Canadian ophthalmology residents.
        Can J Ophthalmol. 2007; 42: 821-825
        • Li B
        • Curts D
        • Iordanous Y
        • Proulx A
        • Sharan S.
        Evaluation of Canadian undergraduate ophthalmology medical education at Western University.
        Can J Ophthalmol. 2016; 51: 373-377
        • Mah JM
        • Bellan L
        • Baxter SA.
        Undergraduate ophthalmology education in Canadian medical schools: a cross-sectional survey.
        Can J Ophthalmol. 2021; 56: 139-141
        • Bressler N
        • Varma R
        • Doan QV
        • et al.
        Underuse of the health care system by persons with diabetes mellitus and diabetic macular edema in the United States.
        JAMA Ophthalmol. 2015; 132: 168-173
        • Quillen DA
        • Harper RA
        • Haik BG.
        Medical student education in ophthalmology: crisis and opportunity.
        Ophthalmology. 2005; 112: 1867-1868
        • Lippa LM
        • Boker J
        • Duke A
        • Amin A.
        A novel 3-year longitudinal pilot study of medical students’ acquisition and retention of screening eye examination skills.
        Ophthalmology. 2006; 113: 133-139
        • Kulasegaram K
        • Mylopoulos M
        • Tonin P
        • et al.
        The alignment imperative in curriculum renewal.
        Med Teach. 2018; 40: 443-448
        • Hayden EL
        • Seagull FJ
        • Reddy RM.
        Developing an educational video on lung lobectomy for the general surgery resident.
        J Surg Res. 2015; 196: 216-220
        • Ewusie JE
        • Soobiah C
        • Blondal E
        • Beyene J
        • Thabane L
        • Hamid JS.
        Methods, applications and challenges in the analysis of interrupted time series data: a scoping review.
        J Multidiscip Healthc. 2020; 13: 411-423
        • Schifferdecker KE
        • Reed VA.
        Using mixed methods research in medical education: basic guidelines for researchers.
        Med Educ. 2009; 43: 637-644
        • Wagner JP
        • Lewis CE
        • Tillou A
        • et al.
        Use of entrustable professional activities in the assessment of surgical resident competency.
        JAMA Surg. 2018; 153: 335-343
        • Kostoff M
        • Burkhardt C
        • Winter A
        • Shrader S.
        An interprofessional simulation using the SBAR communication tool.
        Am J Pharm Educ. 2016; 80: 157
        • Fincham JE.
        Response rates and responsiveness for surveys, standards, and the journal.
        Am J Pharm Educ. 2008; 72: 43
        • Clarkson JG.
        Training in ophthalmology is critical for all physicians.
        Arch Ophthalmol. 2003; 121: 1326-1327
        • Drake RL.
        A unique, innovative, and clinically oriented approach to anatomy education.
        Acad Med. 2007; 82: 475-478
        • Farrell TA
        • Albanese MA
        • Pomrehn PR.
        Problem-based learning in ophthalmology.
        Arch Ophthalmol. 1999; 117: 1223-1226
        • Alani S
        • Black H
        • Harty C
        • Murphy J
        • Whalen D
        • Williams K-L.
        Can we CanMEDS? Intangible learning through tangible simulation case development.
        Cureus. 2016; 8: e685
        • Parrish R
        • Tso M.
        Principles and guidelines of a curriculum for ophthalmic education of medical students.
        Klin Monatsbl Augenheilkd. 2006; 223: S1-19
        • Sridhar J
        • Shahlaee A
        • Mehta S
        • et al.
        Usefulness of structured video indirect ophthalmoscope-guided education in improving resident ophthalmologist confidence and ability.
        Ophthalmol Retin. 2017; 1: 282-287
        • Marks SC.
        The role of three-dimensional information in health care and medical education: the implications for anatomy and dissection.
        Clin Anat. 2000; 13: 448-452
        • Nwachukwu C
        • Lachman N
        • Pawlina W.
        Evaluating dissection in the gross anatomy course: correlation between quality of laboratory dissection and students outcomes.
        Anat Sci Educ. 2015; 8: 45-52
        • Zumwalt AC
        • Marks L
        • Halperin EC.
        Integrating gross anatomy into a clinical oncology curriculum: the oncoanatomy course at Duke University School of Medicine.
        Acad Med. 2007; 82: 469-474
        • Lisk K
        • Flannery JF
        • Loh EY
        • Richardson D
        • Agur AMR
        • Woods NN.
        Determination of clinically relevant content for a musculoskeletal anatomy curriculum for physical medicine and rehabilitation residents.
        Anat Sci Educ. 2014; 7: 135-143
        • Cabrera AR
        • Lee WR
        • Madden R
        • et al.
        Incorporating gross anatomy education into radiation oncology residency: a 2-year curriculum with evaluation of resident satisfaction.
        J Am Coll Radiol. 2011; 8: 335-340
        • Kerby J
        • Shukur ZN
        • Shalhoub J.
        The relationships between learning outcomes and methods of teaching anatomy as perceived by medical students.
        Clin Anat. 2011; 24: 489-497
        • Abdel Meguid EM
        • Khalil MK
        Measuring medical students’ motivation to learning anatomy by cadaveric dissection.
        Anat Sci Educ. 2017; 10: 363-371
        • Sbayeh A
        • Qaedi Choo MA
        • Quane KA
        • et al.
        Relevance of anatomy to medical education and clinical practice: perspectives of medical students, clinicians, and educators.
        Perspect Med Educ. 2016; 5: 338-346
        • Azer SA
        • Eizenberg N.
        Do we need dissection in an integrated problem-based learning medical course? Perceptions of first- and second-year students.
        Surg Radiol Anat. 2007; 29: 173-180
        • Chung EK
        • Nam KIl
        • Oh SA
        • Han ER
        • Woo YJ
        • Hitchcock MA
        Advance organizers in a gross anatomy dissection course and their effects on academic achievement.
        Clin Anat. 2013; 26: 327-332
        • Succar T
        • Grigg J
        • Beaver HA
        • Lee AG.
        A systematic review of best practices in teaching ophthalmology to medical students.
        Surv Ophthalmol. 2016; 61: 83-94
        • Succar T
        • Grigg J
        • Beaver HA
        • Lee AG.
        Advancing ophthalmology medical student education: international insights and strategies for enhanced teaching.
        Surv Ophthalmol. 2020; 65: 263-271
        • Dean WH
        • Gichuhi S
        • Buchan JC
        • et al.
        Intense simulation-based surgical education for manual small-incision cataract surgery: the ophthalmic learning and improvement initiative in cataract surgery randomized clinical trial in Kenya, Tanzania, Uganda, and Zimbabwe.
        JAMA Ophthalmol. 2020; 139: 9-15
        • Weisbrod DJ
        • Felfeli T
        • El-Defrawy SR
        Toronto Guide to Clinical Ophthalmology for Physicians and Medical Trainees.
        Brush Education, Toronto2019