Myopic macular pits: a case series with multimodal imaging

Published:October 06, 2021DOI:



      To characterize the multimodal retinal findings of myopic macular pits, a feature of myopic degeneration.


      A case series of patients with myopic macular pits were studied with multimodal imaging including color fundus photography, fundus autofluorescence (FAF), near infrared reflectance (NIR), spectral domain optical coherence tomography (OCT), optical coherence tomography angiography (OCTA), fluorescein angiography (FA) and indocyanine green angiography (ICG).


      Nine eyes of 6 patients with myopic macular pit were examined. Four patients presented with multiple pits and 3 with bilateral involvement. All pits were localized in a region of severe macular chorioretinal atrophy associated with myopic posterior staphyloma. In 3 eyes, the entrance of the posterior ciliary artery through the sclera was noted at the base of the pit. Schisis overlying the pit or adjacent to the pit was identified in 3 patients.


      Myopic macular pits are an additional rare sign of myopic degeneration, developing in regions of posterior staphyloma complicated by severe chorioretinal atrophy and thin sclera.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. The National Eye Institute. 2010 US myopia statistics reports. [accessed 25 August 2021 ].

        • American Academy of Ophthalmology
        Basic and clinical science course section 3. Optics, refraction and contact lenses.
        American Academy of Ophthalmology, San Francisco2003
        • Pan CW
        • Zheng YF
        • Anuar AR
        • Chew M
        • Gazzard G
        • Aung T
        • Cheng CY
        • Wong TY
        • Saw SM.
        Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study.
        Invest Ophthalmol Vis Sci. 2013 Apr 9; 54 (PMID: 23513059): 2590-2598
        • Holden BA
        • Fricke TR
        • Wilson DA
        • Jong M
        • Naidoo KS
        • Sankaridurg P
        • Wong TY
        • Naduvilath TJ
        • Resnikoff S.
        Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050.
        Ophthalmology. 2016 May; 123 (Epub 2016 Feb 11. PMID: 26875007): 1036-1042
        • Ohno-Matsui K.
        Pathologic Myopia.
        Asia Pac J Ophthalmol (Phila). 2016 Nov/Dec; 5: 415-423
        • Ohno-Matsui K
        • Kawasaki R
        • Jonas JB
        • Cheung CM
        • Saw SM
        • Verhoeven VJ
        • Klaver CC
        • Moriyama M
        • Shinohara K
        • Kawasaki Y
        • Yamazaki M
        • Meuer S
        • Ishibashi T
        • Yasuda M
        • Yamashita H
        • Sugano A
        • Wang JJ
        • Mitchell P
        • Wong TY
        META-analysis for Pathologic Myopia (META-PM) Study Group. International photographic classification and grading system for myopic maculopathy.
        Am J Ophthalmol. 2015 May; 159 (877-83.e7)
        • Pierro L
        • Camesasca FI
        • Mischi M
        • Brancato R.
        Peripheral retinal changes and axial myopia.
        Retina. 1992; 12: 12-17
        • Saw SM
        • Gazzard G
        • Shih-Yen EC
        • Chua WH.
        Myopia and associated pathological complications.
        Ophthalmic Physiol Opt. 2005 Sep; 25: 381-391
        • Ohno-Matsui K
        • Akiba M
        • Moriyama M
        Macular pits and scleral dehiscence in highly myopic eyes with macular chorioretinal atrophy.
        Retin Cases Brief Rep. 2013 Fall; 7: 334-337
        • Ohno-Matsui K
        • Akiba M
        • Moriyama M
        • Shimada N
        • Ishibashi T
        • Tokoro T
        • Spaide RF.
        Acquired optic nerve and peripapillary pits in pathologic myopia.
        Ophthalmology. 2012 Aug; 119: 1685-1692
        • Ohno-Matsui K
        • Akiba M
        • Moriyama M
        • Ishibashi T
        • Hirakata A
        • Tokoro T.
        Intrachoroidal cavitation in macular area of eyes with pathologic myopia.
        Am J Ophthalmol. 2012 Aug; 154: 382-393
        • Freitas-da-Costa P
        • Falcão M
        • Carneiro Â.
        Infrared Reflectance Pattern of Macular Pits in Pathologic Myopia.
        JAMA Ophthalmol. 2015 Jun; 133: e1580
        • Vadivelu JP
        • Shah A
        • Khetan V
        • Lingam G.
        Multimodal imaging to differentiate myopic macular pit and localized deep staphyloma in high myopia.
        Indian J Ophthalmol. 2019 Jul; 67: 1173-1174
        • Venkatesh R
        • Jain K
        • Aseem A
        • Kumar S
        • Yadav NK.
        Intrachoroidal cavitation in myopic eyes.
        Int Ophthalmol. 2020 Jan; 40: 31-41
        • Wu PC
        • Chen YJ
        • Chen YH
        • Chen CH
        • Shin SJ
        • Tsai CL
        • Kuo HK.
        Factors associated with foveoschisis and foveal detachment without macular hole in high myopia.
        Eye (Lond). 2009 Feb; 23: 356-361
        • Baba T
        • Ohno-Matsui K
        • Futagami S
        • Yoshida T
        • Yasuzumi K
        • Kojima A
        • Tokoro T
        • Mochizuki M.
        Prevalence and characteristics of foveal retinal detachment without macular hole in high myopia.
        Am J Ophthalmol. 2003 Mar; 135: 338-342
        • Rahimy E
        • Beardsley RM
        • Gomez J
        • Hung C
        • Sarraf D
        Grading of posterior staphyloma with spectral-domain optical coherence tomography and correlation with macular disease.
        Can J Ophthalmol. 2013 Dec; 48: 539-545