Advertisement

Trends in antibiotic resistance in ocular samples in a tertiary eye centre in Saudi Arabia in 2003–2019

Published:September 17, 2022DOI:https://doi.org/10.1016/j.jcjo.2022.08.012

      Abstract

      Objective

      The aim of this study was to analyze the antibiotic resistance in ocular samples over a 16-year period.

      Methods

      This was a retrospective cohort study conducted at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia (2003–2019). The study included corneal and conjunctival swabs and aqueous and vitreous samples.

      Results

      Coagulase-negative staphylococci exhibited a significant trend of increasing resistance over time to erythromycin (p < 0.001), oxacillin (p < 0.001), fusidic acid (p < 0.001), and moxifloxacin (p = 0.003). Staphylococcus aureus also showed a significant increase in oxacillin (p = 0.001), ofloxacin (p = 0.003), and moxifloxacin (p = 0.001) resistance patterns. Streptococcus pneumoniae demonstrated a significant increase in resistance to erythromycin (p = 0.01) and ofloxacin, which jumped from 0.80% in 2003 to 80% in 2019 (p = 0.015). No statistically significant increase in antibiotic resistance trend was observed for Pseudomonas.

      Conclusions

      An increasing antibiotic resistance pattern was demonstrated, particularly among gram-positive organisms. Such findings warrant revision of the common ocular antibiotic prescribing strategy and consideration of alternative antibiotics.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ventola CL.
        The antibiotic resistance crisis: part 1: causes and threats.
        P T. 2015; 40: 277-283
        • Bertino JS Jr
        Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics.
        Clin Ophthalmol. 2009; 3: 507-521
        • Asbell PA
        • Mah FS
        • Sanfilippo CM
        • et al.
        Antibiotic susceptibility of bacterial pathogens isolated from the aqueous and vitreous humor in the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study.
        J Cataract Refract Surg. 2016; 42: 1841-1843
        • Asbell PA
        • Sanfilippo CM
        • Pillar CM
        • et al.
        Antibiotic resistance among ocular pathogens in the United States: five-year results from the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study.
        JAMA Ophthalmol. 2015; 133: 1445-1454
        • Asbell PA
        • Sanfilippo CM
        • Sahm DF
        • et al.
        Trends in antibiotic resistance among ocular microorganisms in the United States from 2009 to 2018.
        JAMA Ophthalmol. 2020; 138: 439-450
        • Thomas RK
        • Melton R
        • Asbell PA.
        Antibiotic resistance among ocular pathogens: current trends from the ARMOR surveillance study (2009–2016).
        Clin Optom (Auckl). 2019; 11: 15-26
        • Begum NN
        • Al-Khattaf AS
        • Al-Mansouri SM
        • et al.
        A study of bacterial isolates from corneal specimens and their antibiotic resistance profile.
        Saudi Med J. 2006; 27: 41-45
        • Al-Dhaheri H
        • Al-Tamimi M
        • Khandekar R
        • et al.
        Ocular pathogens and antibiotic sensitivity in bacterial keratitis isolates at King Khaled Eye Specialist Hospital, 2011 to 2014.
        Cornea. 2016; 35: 789-794
        • Relhan N
        • Albini TA
        • Pathengay A
        • et al.
        Endophthalmitis caused by gram-positive organisms with reduced vancomycin susceptibility: literature review and options for treatment.
        Br J Ophthalmol. 2016; 100: 446-452
        • Schwartz SG
        • Flynn Jr, HW
        • Das T
        • et al.
        Ocular infection: endophthalmitis.
        Dev Ophthalmol. 2016; 55: 176-188
        • Lichtinger A
        • Yeung SN
        • Kim P
        • et al.
        Shifting trends in bacterial keratitis in Toronto: an 11-year review.
        Ophthalmology. 2012; 119: 1785-1790
        • Lalitha P
        • Manoharan G
        • Karpagam R
        • et al.
        Trends in antibiotic resistance in bacterial keratitis isolates from South India.
        Br J Ophthalmol. 2017; 101: 108-113
        • Hsiao CH
        • Sun CC
        • Yeh LK
        • et al.
        Shifting trends in bacterial keratitis in Taiwan: a 10-year review in a tertiary-care hospital.
        Cornea. 2016; 35: 313-317
        • Hernandez-Camarena JC
        • Graue-Hernandez EO
        • Ortiz-Casas M
        • et al.
        Trends in microbiological and antibiotic sensitivity patterns in infectious keratitis: 10-year experience in Mexico City.
        Cornea. 2015; 34: 778-785
        • Blomquist PH.
        Methicillin-resistant Staphylococcus aureus infections of the eye and orbit (an American Ophthalmological Society thesis).
        Trans Am Ophthalmol Soc. 2006; 104: 322-345
        • Vola ME
        • Moriyama AS
        • Lisboa R
        • et al.
        Prevalence and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus in ocular infections.
        Arq Bras Oftalmol. 2013; 76: 350-353
        • Asbell PA
        • Sahm DF
        • Shaw M
        • et al.
        Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005.
        J Cataract Refract Surg. 2008; 34: 814-818
        • Saïd-Salim B
        • Mathema B
        • Kreiswirth BN.
        Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen.
        Infect Control Hosp Epidemiol. 2003; 24: 451-455
        • Iwao Y
        • Yabe S
        • Takano T
        • et al.
        Isolation and molecular characterization of methicillin-resistant Staphylococcus aureus from public transport.
        Microbiol Immunol. 2012; 56: 76-82
        • Yamamoto T
        • Nishiyama A
        • Takano T
        • et al.
        Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance.
        J Infect Chemother. 2010; 16: 225-254
        • Alhussaini MS.
        Methicillin-resistant Staphylococcus aureus nasal carriage among patients admitted at Shaqra General Hospital in Saudi Arabia.
        Pak J Biol Sci. 2016; 19: 233-238
        • Abou Shady HM
        • Bakr AE
        • Hashad ME
        • et al.
        Staphylococcus aureus nasal carriage among outpatients attending primary health care centers: a comparative study of two cities in Saudi Arabia and Egypt.
        Braz J Infect Dis. 2015; 19: 68-76
        • Elsahn AF
        • Yildiz EH
        • Jungkind DL
        • et al.
        In vitro susceptibility patterns of methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus corneal isolates to antibiotics.
        Cornea. 2010; 29: 1131-1135
        • Laura DM
        • Scott NL
        • Vanner EA
        • et al.
        Genotypic and phenotypic antibiotic resistance in Staphylococcus epidermidis endophthalmitis.
        Ophthalmic Surg Lasers Imaging Retina. 2020; 51: S13-S16
        • Eiferman RA
        • O'Neill KP
        • Morrison NA
        Methicillin-resistant Staphylococcus aureus corneal ulcers.
        Ann Ophthalmol. 1991; 23: 414-415
        • Solomon R
        • Donnenfeld ED
        • Perry HD
        • et al.
        Penetration of topically applied gatifloxacin 0.3%, moxifloxacin 0.5%, and ciprofloxacin 0.3% into the aqueous humor.
        Ophthalmology. 2005; 112: 466-469
        • Schlech BA
        • Blondeau J.
        Future of ophthalmic anti-infective therapy and the role of moxifloxacin ophthalmic solution 0.5% (VIGAMOX).
        Surv Ophthalmol. 2005; 50: S64-S67
        • Alfonso E
        • Crider J.
        Ophthalmic infections and their anti-infective challenges.
        Surv Ophthalmol. 2005; 50: S1-S6
        • Neu HC.
        Microbiologic aspects of fluoroquinolones.
        Am J Ophthalmol. 1991; 112: 15s-24s
        • Mah FS.
        Fourth-generation fluoroquinolones: new topical agents in the war on ocular bacterial infections.
        Curr Opin Ophthalmol. 2004; 15: 316-320
        • Miller D.
        Pharmacological treatment for infectious corneal ulcers.
        Expert Opin Pharmacother. 2013; 14: 543-560
        • Al-Saleh GS
        • Alfawaz AM.
        Management of traumatic corneal abrasion by a sample of practicing ophthalmologists in Saudi Arabia.
        Saudi J Ophthalmol. 2018; 32: 105-109
        • Alexandrakis G
        • Alfonso EC
        • Miller D.
        Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones.
        Ophthalmology. 2000; 107: 1497-1502
        • Shalchi Z
        • Gurbaxani A
        • Baker M
        • et al.
        Antibiotic resistance in microbial keratitis: ten-year experience of corneal scrapes in the United Kingdom.
        Ophthalmology. 2011; 118: 2161-2165
        • Park SH
        • Lim JA
        • Choi JS
        • et al.
        The resistance patterns of normal ocular bacterial flora to 4 fluoroquinolone antibiotics.
        Cornea. 2009; 28: 68-72
        • Fintelmann RE
        • Hoskins EN
        • Lietman TM
        • et al.
        Topical fluoroquinolone use as a risk factor for in vitro fluoroquinolone resistance in ocular cultures.
        Arch Ophthalmol. 2011; 129: 399-402
        • Milder E
        • Vander J
        • Shah C
        • et al.
        Changes in antibiotic resistance patterns of conjunctival flora due to repeated use of topical antibiotics after intravitreal injection.
        Ophthalmology. 2012; 119: 1420-1424
        • Lautenbach E
        • Fishman NO
        • Bilker WB
        • et al.
        Risk factors for fluoroquinolone resistance in nosocomial Escherichia coli and Klebsiella pneumoniae infections.
        Arch Intern Med. 2002; 162: 2469-2477
        • Chalita MR
        • Höfling-Lima AL
        • Jr Paranhos A
        • et al.
        Shifting trends in in vitro antibiotic susceptibilities for common ocular isolates during a period of 15 years.
        Am J Ophthalmol. 2004; 137: 43-51
        • Alburayk KB
        • Alqahtani BS
        • Alsarhani WK.
        Ophthalmology self-medication practices: a questionnaire-based study.
        Ophthalmic Epidemiol. 2021; 28: 453-457
        • Lim CH
        • Carnt NA
        • Farook M
        • et al.
        Risk factors for contact lens-related microbial keratitis in Singapore.
        Eye (Lond). 2016; 30: 447-455
        • Lee AE
        • Niruttan K
        • Rawson TM
        • et al.
        Antibacterial resistance in ophthalmic infections: a multi-centre analysis across UK care settings.
        BMC Infect Dis. 2019; 19: 768
        • Benitez-Del-Castillo J
        • Verboven Y
        • Stroman D
        • et al.
        The role of topical moxifloxacin, a new antibacterial in Europe, in the treatment of bacterial conjunctivitis.
        Clin Drug Investig. 2011; 31: 543-557
        • Malafa MM
        • Coleman JE
        • Bowman RW
        • et al.
        Perioperative corneal abrasion: updated guidelines for prevention and management.
        Plast Reconstr Surg. 2016; 137: 790e-798e